2010 AIME II Problems/Problem 8

Revision as of 18:16, 3 April 2010 by Moplam (talk | contribs) (Created page with '== Problem 8 == Let <math>N</math> be the number of ordered pairs of nonempty sets <math>\mathcal{A}</math> and <math>\mathcal{B}</math> that have the following properties: <UL>…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 8

Let $N$ be the number of ordered pairs of nonempty sets $\mathcal{A}$ and $\mathcal{B}$ that have the following properties:

  • $\mathcal{A} \cup \mathcal{B} = \{1,2,3,4,5,6,7,8,9,10,11,12\}$,
  • $\mathcal{A} \cap \mathcal{B} = \emptyset$,
  • The number of elements of $\mathcal{A}$ is not an element of $\mathcal{A}$,
  • The number of elements of $\mathcal{B}$ is not an element of $\mathcal{B}$.

Find $N$.

solution

Let us partition the set $\{1,2,\cdots,12\}$ into $n$ numbers in $A$ and $12-n$ numbers in $B$,

Since $n$ must be in $B$ and $12-n$ must be in $A$ (if $n\ne6$, we cannot partition into two sets of 6 because $6$ needs to end up somewhere, $n\ne 0$ or $12$ either)


We have $\dbinom{10}{n-1}$ ways of picking the numbers to be in $A$.

So the answer is $\left(\sum_{n=1}^{11} \dbinom{10}{n-1}\right) - \dbinom{10}{5}=2^{10}-252= \boxed{772}$

See also

2010 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions