During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

# Difference between revisions of "2010 AIME I Problems/Problem 6"

## Problem

Let $P(x)$ be a quadratic polynomial with real coefficients satisfying $x^2 - 2x + 2 \le P(x) \le 2x^2 - 4x + 3$ for all real numbers $x$, and suppose $P(11) = 181$. Find $P(16)$.

## Solution

### Solution 1

$[asy] import graph; real min = -0.5, max = 2.5; pen dark = linewidth(1); real P(real x) { return 8*(x-1)^2/5+1; } real Q(real x) { return (x-1)^2+1; } real R(real x) { return 2*(x-1)^2+1; } draw(graph(P,min,max),dark); draw(graph(Q,min,max),linetype("6 2")+linewidth(0.7)); draw(graph(R,min,max),linetype("6 2")+linewidth(0.7)); dot((1,1)); label("P(x)",(max,P(max)),E,fontsize(10)); label("Q(x)",(max,Q(max)),E,fontsize(10)); label("R(x)",(max,R(max)),E,fontsize(10)); /* axes */ Label f; f.p=fontsize(8); xaxis(-2, 3, Ticks(f, 5, 1)); yaxis(-1, 5, Ticks(f, 6, 1)); [/asy]$

Let $Q(x) = x^2 - 2x + 2$, $R(x) = 2x^2 - 4x + 3$. Completing the square, we have $Q(x) = (x-1)^2 + 1$, and $R(x) = 2(x-1)^2 + 1$, so it follows that $P(x) \ge Q(x) \ge 1$ for all $x$ (by the Trivial Inequality).

Also, $1 = Q(1) \le P(1) \le R(1) = 1$, so $P(1) = 1$, and $P$ obtains its minimum at the point $(1,1)$. Then $P(x)$ must be of the form $c(x-1)^2 + 1$ for some constant $c$; substituting $P(11) = 181$ yields $c = \frac 95$. Finally, $P(16) = \frac 95 \cdot (16 - 1)^2 + 1 = \boxed{406}$.

### Solution 2

It can be seen that the function $P(x)$ must be in the form $f(x) = ax^2 - 2ax + c$ for some real $a$ and $c$. This is because the derivative of $P(x)$ is $2ax - 2a$, and a global minimum occurs only at $x = 1$ (alternatively, the minimum occurs when $x = 1 = -b/[2a]$). Substituting $(1,1)$ and $(11, 181)$ we obtain two equations:

$P(11) = 99a + c = 181$, and $P(1) = -a + c = 1$.

Solving, we get $a = \frac{9}{5}$ and $c = \frac{14}{5}$, so $P(x) = \frac{9}{5}x^2 - \frac{18}{5}x + \frac {14}{5}$. Therefore, $P(16) = \boxed{406}$.