# 2010 AMC 10A Problems/Problem 13

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Angelina drove at an average rate of $80$ kmh and then stopped $20$ minutes for gas. After the stop, she drove at an average rate of $100$ kmh. Altogether she drove $250$ km in a total trip time of $3$ hours including the stop. Which equation could be used to solve for the time $t$ in hours that she drove before her stop? $\textbf{(A)}\ 80t+100\left(\frac{8}{3}-t\right)=250 \qquad \textbf{(B)}\ 80t=250 \qquad \textbf{(C)}\ 100t=250 \qquad \textbf{(D)}\ 90t=250 \qquad \textbf{(E)}\ 80\left(\frac{8}{3}-t\right)+100t=250$

## Solution

The answer is $A$ because she drove at $80$ kmh for $t$ hours (the amount of time before the stop), and $100$ kmh for $\frac{8}{3}-t$ because she wasn't driving for $20$ minutes, or $\frac{1}{3}$ hours. Multiplying by $t$ gives the total distance, which is $250$ km. Therefore, the answer is $80t+100\left(\frac{8}{3}-t\right)=250$ $\Rightarrow$ $\boxed{(A)}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 