Difference between revisions of "2010 AMC 10A Problems/Problem 2"

m (Solution)
Line 30: Line 30:
  
 
Let the length of the small square be <math>x</math>, intuitively, the length of the big square is <math>4x</math>. It can be seen that the width of the rectangle is <math>3x</math>. Thus, the length of the rectangle is <math>4x/3x = 4/3</math> times large as the width. The answer is <math>\boxed{B}</math>.
 
Let the length of the small square be <math>x</math>, intuitively, the length of the big square is <math>4x</math>. It can be seen that the width of the rectangle is <math>3x</math>. Thus, the length of the rectangle is <math>4x/3x = 4/3</math> times large as the width. The answer is <math>\boxed{B}</math>.
 +
 +
 +
== See also ==
 +
{{AMC10 box|year=2010|ab=A|num-b=1|num-a=3}}

Revision as of 19:34, 1 January 2012

Problem 2

Four identical squares and one rectangle are placed together to form one large square as shown. The length of the rectangle is how many times as large as its width?

[asy] unitsize(8mm); defaultpen(linewidth(.8pt));  draw((0,0)--(4,0)--(4,4)--(0,4)--cycle); draw((0,3)--(0,4)--(1,4)--(1,3)--cycle); draw((1,3)--(1,4)--(2,4)--(2,3)--cycle); draw((2,3)--(2,4)--(3,4)--(3,3)--cycle); draw((3,3)--(3,4)--(4,4)--(4,3)--cycle);  [/asy]

$\mathrm{(A)}\ \dfrac{5}{4} \qquad \mathrm{(B)}\ \dfrac{4}{3} \qquad \mathrm{(C)}\ \dfrac{3}{2} \qquad \mathrm{(D)}\ 2 \qquad \mathrm{(E)}\ 3$

Solution

Let the length of the small square be $x$, intuitively, the length of the big square is $4x$. It can be seen that the width of the rectangle is $3x$. Thus, the length of the rectangle is $4x/3x = 4/3$ times large as the width. The answer is $\boxed{B}$.


See also

2010 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions