2010 AMC 10A Problems/Problem 21

Revision as of 22:45, 18 January 2019 by Geometry math-ster (talk | contribs)

Problem

The polynomial $x^3-ax^2+bx-2010$ has three positive integer roots. What is the smallest possible value of $a$?

$\textbf{(A)}\ 78 \qquad \textbf{(B)}\ 88 \qquad \textbf{(C)}\ 98 \qquad \textbf{(D)}\ 108 \qquad \textbf{(E)}\ 118$

Solution

Solution 1

By Vieta's Formulas, we know that $a$ is the sum of the three roots of the polynomial $x^3-ax^2+bx-2010$. Again Vieta's Formulas tell us that $2010$ is the product of the three integer roots. Also, $2010$ factors into $2\cdot3\cdot5\cdot67$. But, since there are only three roots to the polynomial, two of the four prime factors must be multiplied so that we are left with three roots. To minimize $a$, $2$ and $3$ should be multiplied, which means $a$ will be $6+5+67=78$ and the answer is $\boxed{\textbf{(A)}}$.

Solution 2

We can expand $(x+a)(x+b)(x+c)$ as $(x^2+ax+bx+ab)(x+c)$

$(x^2+ax+bx+ab)(x+c)=x^3+abx+acx+bcx+abx^2+acx^2+bcx^2+abc=x^3+x^2(a+b+c)+x(ab+ac+bc)+abc$

We do not care about $+bx$ in this case, because we are only looking for a. We know that the constant term is $-2010=-(2*3*5*67)$ We are trying to minimize a, such that we have $-ax^2$ Since we have three positive solutions, we have $(x-a)(x-b)(x-c)$ as our factors. We have to combine two of the factors of $2*3*5*67$, and then sum up the $3$ resulting factors. Since we are minimizing, we choose $2$ and $3$ to combine together. We get $(x-6)(x-5)(x-67)$ which gives us a coefficient of $x^2$ of $-6-5-67=-78$ Therefore $-a=-78$ or $a=\boxed{\textbf{(A)}78}$

Solution 3

You can also just skip to the answer when you get 78, since it's the lowest answer already.

See Also

2010 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png