Difference between revisions of "2010 AMC 10A Problems/Problem 24"

(Solution 2(bash))
(Solution 2(bash))
Line 27: Line 27:
 
First, we list out all the numbers
 
First, we list out all the numbers
 
<math>90!=2^{65}3^{44}5^{21}7^{13}11^813^617^519^423^329^331^237^241^243^2\cdot47\cdot53\cdot\cdot\cdot89</math>
 
<math>90!=2^{65}3^{44}5^{21}7^{13}11^813^617^519^423^329^331^237^241^243^2\cdot47\cdot53\cdot\cdot\cdot89</math>
 +
Since we must get rid of ending <math>0</math>s, we get rid of <math>5^21</math> and the corresponding <math>2^21</math>
 +
Next, we note that <math>2^22\equiv2^2</math>,<math>3^20\equiv3</math>, and <math>7^4\equiv7</math>, so it can be simplified to
 +
<math>2^43^47\cdot11^813^617^5\cdot\cdot\cdot89</math>
  
 
== See also ==
 
== See also ==

Revision as of 21:03, 1 February 2020

Problem

The number obtained from the last two nonzero digits of $90!$ is equal to $n$. What is $n$?

$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 32 \qquad \textbf{(C)}\ 48 \qquad \textbf{(D)}\ 52 \qquad \textbf{(E)}\ 68$

Solution 1(Bigbrain)

We will use the fact that for any integer $n$, \begin{align*}(5n+1)(5n+2)(5n+3)(5n+4)&=[(5n+4)(5n+1)][(5n+2)(5n+3)]\\ &=(25n^2+25n+4)(25n^2+25n+6)\equiv 4\cdot 6\\ &=24\pmod{25}\equiv -1\pmod{25}.\end{align*}

First, we find that the number of factors of $10$ in $90!$ is equal to $\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21$. Let $N=\frac{90!}{10^{21}}$. The $n$ we want is therefore the last two digits of $N$, or $N\pmod{100}$. Since there is clearly an excess of factors of 2, we know that $N\equiv 0\pmod 4$, so it remains to find $N\pmod{25}$.

We can write $N$ as $\frac M{2^{21}}$ where \[M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18 = \frac{90!}{5^{21}},\] where every number in the form $5n$ is replaced by $n$.

The number $M$ can be grouped as follows:

\begin{align*}M= &(1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots(86\cdot 87\cdot 88\cdot 89)\\ &\cdot (1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots (16\cdot 17\cdot 18) \\ &\cdot (1\cdot 2\cdot 3).\end{align*}

Hence, we can reduce $M$ to

\begin{align*}M&\equiv(-1)^{18} \cdot (-1)^3(16\cdot 17\cdot 18) \cdot (1\cdot 2\cdot 3) \\ &= 1\cdot -21\cdot 6\\ &= -1\pmod{25} =24\pmod{25}.\end{align*}

Using the fact that $2^{10}=1024\equiv -1\pmod{25}$,we can deduce that $2^{21}\equiv 2\pmod{25}$. Therefore $N=\frac M{2^{21}}\equiv \frac {24}2\pmod{25}=12\pmod{25}$.

Finally, combining with the fact that $N\equiv 0\pmod 4$ yields $n=\boxed{\textbf{(A)}\ 12}$.

Solution 2(bash)

First, we list out all the numbers $90!=2^{65}3^{44}5^{21}7^{13}11^813^617^519^423^329^331^237^241^243^2\cdot47\cdot53\cdot\cdot\cdot89$ Since we must get rid of ending $0$s, we get rid of $5^21$ and the corresponding $2^21$ Next, we note that $2^22\equiv2^2$,$3^20\equiv3$, and $7^4\equiv7$, so it can be simplified to $2^43^47\cdot11^813^617^5\cdot\cdot\cdot89$

See also

2010 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png