Difference between revisions of "2010 AMC 10B Problems/Problem 21"

(Created page with '== Problem 21== A palindrome between <math>1000</math> and <math>10,000</math> is chosen at random. What is the probability that it is divisible by <math>7</math>? <math>\textbf…')
 
Line 7: Line 7:
 
View the palindrome as some number with form (decimal representation):
 
View the palindrome as some number with form (decimal representation):
 
<math>a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0</math>. But because the number is a palindrome, <math>a_3 = a_0, a_2 = a_1</math>. Recombining this yields <math>1001a_3 + 110a_2</math>. 1001 is divisible by 7, which means that as long as <math>a_2 = 0</math>, the palindrome will be divisible by 7. This yields 9 palindromes out of 90 (<math>9 \cdot 10</math>) possibilities for palindromes. However, if <math>a_2 = 7</math>, then this gives another case in which the palindrome is divisible by 7. This adds another 9 palindromes to the list, bringing our total to <math>18/90 = \boxed {\frac{1}{5} } = \boxed {E}</math>
 
<math>a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0</math>. But because the number is a palindrome, <math>a_3 = a_0, a_2 = a_1</math>. Recombining this yields <math>1001a_3 + 110a_2</math>. 1001 is divisible by 7, which means that as long as <math>a_2 = 0</math>, the palindrome will be divisible by 7. This yields 9 palindromes out of 90 (<math>9 \cdot 10</math>) possibilities for palindromes. However, if <math>a_2 = 7</math>, then this gives another case in which the palindrome is divisible by 7. This adds another 9 palindromes to the list, bringing our total to <math>18/90 = \boxed {\frac{1}{5} } = \boxed {E}</math>
 +
 +
 +
== See also ==
 +
{{AMC10 box|year=2010|ab=B|num-b=20|num-a=22}}

Revision as of 20:40, 5 October 2011

Problem 21

A palindrome between $1000$ and $10,000$ is chosen at random. What is the probability that it is divisible by $7$?

$\textbf{(A)}\ \dfrac{1}{10} \qquad \textbf{(B)}\ \dfrac{1}{9} \qquad \textbf{(C)}\ \dfrac{1}{7} \qquad \textbf{(D)}\ \dfrac{1}{6} \qquad \textbf{(E)}\ \dfrac{1}{5}$

Solution

View the palindrome as some number with form (decimal representation): $a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$. But because the number is a palindrome, $a_3 = a_0, a_2 = a_1$. Recombining this yields $1001a_3 + 110a_2$. 1001 is divisible by 7, which means that as long as $a_2 = 0$, the palindrome will be divisible by 7. This yields 9 palindromes out of 90 ($9 \cdot 10$) possibilities for palindromes. However, if $a_2 = 7$, then this gives another case in which the palindrome is divisible by 7. This adds another 9 palindromes to the list, bringing our total to $18/90 = \boxed {\frac{1}{5} } = \boxed {E}$


See also

2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions