# 2010 AMC 12B Problems/Problem 20

## Problem

A geometric sequence $(a_n)$ has $a_1=\sin x$, $a_2=\cos x$, and $a_3= \tan x$ for some real number $x$. For what value of $n$ does $a_n=1+\cos x$?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

## Solution

By the defintion of a geometric sequence, we have $\cos^2x=\sin x \tan x$. Since $\tan x=\frac{\sin x}{\cos x}$, we can rewrite this as $\cos^3x=\sin^2x$.

The common ratio of the sequence is $\frac{\cos x}{\sin x}$, so we can write

$$a_1= \sin x$$ $$a_2= \cos x$$ $$a_3= \frac{\cos^2x}{\sin x}$$ $$a_4=\frac{\cos^3x}{\sin^2x}=1$$ $$a_5=\frac{\cos x}{\sin x}$$ $$a_6=\frac{\cos^2x}{\sin^2x}$$ $$a_7=\frac{\cos^3x}{\sin^3x}=\frac{1}{\sin x}$$ $$a_8=\frac{\cos x}{\sin^2 x}=\frac{1}{\cos^2 x}$$

Since $\cos^3x=\sin^2x=1-\cos^2x$, we have $\cos^3x+\cos^2x=1 \implies \cos^2x(\cos x+1)=1 \implies \cos x+1=\frac{1}{\cos^2 x}$, which is $a_8$ , making our answer $8 \Rightarrow \boxed{E}$.

## Solution 2

Notice that the common ratio is $r=\frac{\cosx}{\sinx}$ (Error compiling LaTeX. ! Undefined control sequence.); multiplying it to $\tanx=\frac{\sinx}{\cosx}$ (Error compiling LaTeX. ! Undefined control sequence.) gives $a_4=1$. Then, working backwards we have $a_3=\frac{1}{r}$, $a_2=\frac{1}{r^2}$ and $a_1=\frac{1}{r^3}$. Now notice that since $a_1=\sinx$ (Error compiling LaTeX. ! Undefined control sequence.) and $\a_2=cosx$ (Error compiling LaTeX. ! LaTeX Error: Command \_ unavailable in encoding OT1.), we need $a_1^2+a_2^2=1$, so $\frac{1}{r^6}+\frac{1}{r^4}=\frac{r^2+1}{r^6}=1\implies r^2+1=r^6$. Dividing both sides by $r^2$ gives $1+\frac{1}{r^2}=r^4$, which the left side is equal to $1+\cosx$ (Error compiling LaTeX. ! Undefined control sequence.); we see as well that the right hand side is equal to $a_8$ given $a_4=1$, so the answer is $\boxed{E}$. - mathleticguyyy