2010 AMC 12B Problems/Problem 20

Revision as of 16:22, 31 May 2011 by Btilm305 (talk | contribs) (undo...formatting's fine)

Problem

A geometric sequence $(a_n)$ has $a_1=\sin x$, $a_2=\cos x$, and $a_3= \tan x$ for some real number $x$. For what value of $n$ does $a_n=1+\cos x$?


$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

Solution

By defintion, we have $\cos^2x=\sin x \tan x$. Since $\tan x=\frac{\sin x}{\cos x}$, we can rewrite this as $\cos^3x=\sin^2x$.

The common ratio of the sequence is $\frac{\cos x}{\sin x}$, so we can write

$a_1= \sin x$ $a_2= \cos x$ $a_3= \frac{\cos^2x}{\sin x}$ $a_4=\frac{\cos^3x}{\sin^2x}=1$ $a_5=\frac{\cos x}{\sin x}$ $a_6=\frac{\cos^2x}{\sin^2x}$ $a_7=\frac{\cos^3x}{\sin^3x}=\frac{1}{\sin x}$ $a_8=\frac{\cos x}{\sin x^2}=\frac{1}{\cos^2 x}$ $a_9=\frac{\cos x}{\sin x}$


We can conclude that the sequence from $a_4$ to $a_8$ repeats.

Since $\cos^3x=\sin^2x=1-\cos^2x$, we have $\cos^3x+\cos^2x=1 \implies \cos^2x(\cos x+1)=1 \implies \cos x+1=\frac{1}{\cos^2 x}$, which is $a_8$ making our answer $8 \Rightarrow \boxed{E}$.

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions