Difference between revisions of "2011 AIME II Problems/Problem 4"
m (→Solution 5 (quick Menelaus)) |
Pi is 3.14 (talk | contribs) (→Solution 8 (Cheese)) |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
== Problem 4 == | == Problem 4 == | ||
− | In triangle <math>ABC</math>, <math>AB= | + | In triangle <math>ABC</math>, <math>AB=20</math> and <math>AC=11</math>. The angle bisector of <math>\angle A</math> intersects <math>BC</math> at point <math>D</math>, and point <math>M</math> is the midpoint of <math>AD</math>. Let <math>P</math> be the point of the intersection of <math>AC</math> and <math>BM</math>. The ratio of <math>CP</math> to <math>PA</math> can be expressed in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
__TOC__ | __TOC__ | ||
Line 13: | Line 13: | ||
D(MP("A",D(A))--MP("B",D(B),N)--MP("C",D(C))--cycle); D(A--MP("D",D(D),NE)--MP("D'",D(D2))); D(B--MP("P",D(P))); D(MP("M",M,NW)); MP("20",(B+D)/2,ENE); MP("11",(C+D)/2,ENE); | D(MP("A",D(A))--MP("B",D(B),N)--MP("C",D(C))--cycle); D(A--MP("D",D(D),NE)--MP("D'",D(D2))); D(B--MP("P",D(P))); D(MP("M",M,NW)); MP("20",(B+D)/2,ENE); MP("11",(C+D)/2,ENE); | ||
− | </asy> Let <math>D'</math> be on <math>\overline{AC}</math> such that <math>BP \parallel DD'</math>. It follows that <math>\triangle BPC \sim \triangle DD'C</math>, so <cmath>\frac{PC}{D'C} = 1 + \frac{BD}{DC} = 1 + \frac{AB}{AC} = \frac{31}{11}</cmath> by the [[Angle Bisector Theorem]]. Similarly, we see by the | + | </asy> Let <math>D'</math> be on <math>\overline{AC}</math> such that <math>BP \parallel DD'</math>. It follows that <math>\triangle BPC \sim \triangle DD'C</math>, so <cmath>\frac{PC}{D'C} = 1 + \frac{BD}{DC} = 1 + \frac{AB}{AC} = \frac{31}{11}</cmath> by the [[Angle Bisector Theorem]]. Similarly, we see by the Midline Theorem that <math>AP = PD'</math>. Thus, <cmath>\frac{CP}{PA} = \frac{1}{\frac{PD'}{PC}} = \frac{1}{1 - \frac{D'C}{PC}} = \frac{31}{20},</cmath> and <math>m+n = \boxed{51}</math>. |
− | === Solution 2 === | + | === Solution 2 (mass points) === |
Assign [[mass points]] as follows: by Angle-Bisector Theorem, <math>BD / DC = 20/11</math>, so we assign <math>m(B) = 11, m(C) = 20, m(D) = 31</math>. Since <math>AM = MD</math>, then <math>m(A) = 31</math>, and <math>\frac{CP}{PA} = \frac{m(A) }{ m(C)} = \frac{31}{20}</math>, so <math>m+n = \boxed{51}</math>. | Assign [[mass points]] as follows: by Angle-Bisector Theorem, <math>BD / DC = 20/11</math>, so we assign <math>m(B) = 11, m(C) = 20, m(D) = 31</math>. Since <math>AM = MD</math>, then <math>m(A) = 31</math>, and <math>\frac{CP}{PA} = \frac{m(A) }{ m(C)} = \frac{31}{20}</math>, so <math>m+n = \boxed{51}</math>. | ||
Line 34: | Line 34: | ||
<cmath>\frac{AD}{DM}\cdot\frac{MB}{BP}\cdot\frac{PC}{CA}=1\implies \frac{PC}{CA}=\frac{31}{51}.</cmath> | <cmath>\frac{AD}{DM}\cdot\frac{MB}{BP}\cdot\frac{PC}{CA}=1\implies \frac{PC}{CA}=\frac{31}{51}.</cmath> | ||
Therefore, <math>\frac{PC}{AP}=\frac{31}{51-31}=\frac{31}{20}.</math> The answer is <math>\boxed{051}</math>. -brainiacmaniac31 | Therefore, <math>\frac{PC}{AP}=\frac{31}{51-31}=\frac{31}{20}.</math> The answer is <math>\boxed{051}</math>. -brainiacmaniac31 | ||
+ | |||
+ | ==Solution 7 (Visual)== | ||
+ | [[File:2011 AIME II 4.png|400px]] | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | |||
+ | ==Solution 8 (Cheese)== | ||
+ | Assume <math>ABC</math> is a right triangle at <math>A</math>. Line <math>AD = x</math> and <math>BC = \tfrac{-11}{20}x + 11</math>. These two lines intersect at <math>D</math> which have coordinates <math>(\frac{220}{31},\frac{220}{31})</math> and thus <math>M</math> has coordinates <math>(\frac{110}{31},\frac{110}{31})</math>. Thus, the line <math>BM = \tfrac{11}{51} \cdot (20-x)</math>. When <math>x = 0</math>, <math>P</math> has <math>y</math> coordinate equal to <math>\frac{11\cdot20}{51}</math> \{AP + CP}{AP} = 1 + \frac{CP}{AP}<math> = </math>\tfrac{51}{20} = 1 + \frac{CP}{AP}<math></math>. Which equals to <math>\boxed{\tfrac{31}{20}}</math> | ||
+ | |||
+ | |||
+ | == Video Solution by OmegaLearn == | ||
+ | https://youtu.be/Gjt25jRiFns?t=314 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
== See also == | == See also == |
Latest revision as of 03:31, 23 January 2023
Problem 4
In triangle ,
and
. The angle bisector of
intersects
at point
, and point
is the midpoint of
. Let
be the point of the intersection of
and
. The ratio of
to
can be expressed in the form
, where
and
are relatively prime positive integers. Find
.
Contents
Solutions
Solution 1
Let
be on
such that
. It follows that
, so
by the Angle Bisector Theorem. Similarly, we see by the Midline Theorem that
. Thus,
and
.
Solution 2 (mass points)
Assign mass points as follows: by Angle-Bisector Theorem, , so we assign
. Since
, then
, and
, so
.
Solution 3
By Menelaus' Theorem on with transversal
,
So
.
Solution 4
We will use barycentric coordinates. Let ,
,
. By the Angle Bisector Theorem,
. Since
is the midpoint of
,
. Therefore, the equation for line BM is
. Let
. Using the equation for
, we get
Therefore,
so the answer is
.
Solution 5
Let . Then by the Angle Bisector Theorem,
. By the Ratio Lemma, we have that
Notice that
since their bases have the same length and they share a height. By the sin area formula, we have that
Simplifying, we get that
Plugging this into what we got from the Ratio Lemma, we have that
Solution 6 (quick Menelaus)
First, we will find . By Menelaus on
and the line
, we have
This implies that
. Then, by Menelaus on
and line
, we have
Therefore,
The answer is
. -brainiacmaniac31
Solution 7 (Visual)
vladimir.shelomovskii@gmail.com, vvsss
Solution 8 (Cheese)
Assume is a right triangle at
. Line
and
. These two lines intersect at
which have coordinates
and thus
has coordinates
. Thus, the line
. When
,
has
coordinate equal to
\{AP + CP}{AP} = 1 + \frac{CP}{AP}
\tfrac{51}{20} = 1 + \frac{CP}{AP}$$ (Error compiling LaTeX. ). Which equals to
Video Solution by OmegaLearn
https://youtu.be/Gjt25jRiFns?t=314
~ pi_is_3.14
See also
2011 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.