Difference between revisions of "2011 AIME I Problems/Problem 11"

(Linked to Euler's theorem)
Line 10: Line 10:
== See also ==
== See also ==
{{AIME box|year=2011|n=I|num-b=10|num-a=12}}
{{AIME box|year=2011|n=I|num-b=10|num-a=12}}
{{MAA Notice}}

Revision as of 19:25, 4 July 2013


Let $R$ be the set of all possible remainders when a number of the form $2^n$, $n$ a nonnegative integer, is divided by $1000$. Let $S$ be the sum of the elements in $R$. Find the remainder when $S$ is divided by $1000$.


Note that $x \equiv y \pmod{1000} \Leftrightarrow x \equiv y \pmod{125}$ and $x \equiv y \pmod{8}$. So we must find the first two integers $i$ and $j$ such that $2^i \equiv 2^j \pmod{125}$ and $2^i \equiv 2^j \pmod{8}$ and $i \neq j$. Note that $i$ and $j$ will be greater than 2 since remainders of $1, 2, 4$ will not be possible after 2 (the numbers following will always be congruent to 0 modulo 8). Note that $2^{100}\equiv 1\pmod{125}$ (see Euler's theorem) and $2^0,2^1,2^2,\ldots,2^{99}$ are all distinct modulo 125. Thus, $i = 3$ and $j =103$ are the first two integers such that $2^i \equiv 2^j \pmod{1000}$. All that is left is to find $S$ in mod $1000$. After some computation: \[S = 2^0+2^1+2^2+2^3+2^4+...+2^{101}+ 2^{102} = 2^{103}-1 \equiv 8 - 1 \mod 1000 = \boxed{007}.\]

See also

2011 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS