Difference between revisions of "2011 AIME I Problems/Problem 12"
Dacalculus (talk | contribs) (→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | Let <math>n</math> be the number of women present, and let _ be some positive number of women between groups of men. Since the problem states that every man stands next to another man, there cannot be isolated men. Thus, there are five cases to consider, where <math>(k)</math> refers to a consecutive group of <math>k</math> men: | |
− | |||
− | |||
_(2)_(2)_(2)_ | _(2)_(2)_(2)_ | ||
Line 17: | Line 15: | ||
_(6)_ | _(6)_ | ||
− | + | For the first case, we can place the three groups of men in between women. We can think of the groups of men as dividers splitting up the <math>n</math> women. Since there are <math>n+1</math> possible places to insert the dividers, and we need to choose any three of these locations, we have <math>\dbinom{n+1}{3}</math> ways. | |
+ | |||
+ | The second, third, and fourth cases are like the first, only we need to insert two dividers among the <math>n+1</math> possible locations. Each gives us <math>\dbinom{n+1}{2}</math> ways, for a total of <math>3\dbinom{n+1}{2}</math>. | ||
+ | |||
+ | The last case gives us <math>\dbinom{n+1}{1}</math> ways. | ||
+ | |||
+ | Therefore, the total number of possible ways where there are no isolated men is | ||
− | + | <cmath>\dbinom{n+1}{3}+3\dbinom{n+1}{2}+(n+1).</cmath> | |
− | |||
− | + | Thus, we have | |
− | + | <math>\dfrac{ 2\dbinom{n+1}{2} + \dbinom{n+1}{1}}{\dbinom{n+3}{3}+\dbinom{n+2}{2}}</math> | |
the numerator simplifies to <math>(n+1)^2</math>. | the numerator simplifies to <math>(n+1)^2</math>. |
Revision as of 11:03, 2 March 2016
Problem
Six men and some number of women stand in a line in random order. Let be the probability that a group of at least four men stand together in the line, given that every man stands next to at least one other man. Find the least number of women in the line such that does not exceed 1 percent.
Solution
Let be the number of women present, and let _ be some positive number of women between groups of men. Since the problem states that every man stands next to another man, there cannot be isolated men. Thus, there are five cases to consider, where refers to a consecutive group of men:
_(2)_(2)_(2)_
_(3)_(3)_
_(2)_(4)_
_(4)_(2)_
_(6)_
For the first case, we can place the three groups of men in between women. We can think of the groups of men as dividers splitting up the women. Since there are possible places to insert the dividers, and we need to choose any three of these locations, we have ways.
The second, third, and fourth cases are like the first, only we need to insert two dividers among the possible locations. Each gives us ways, for a total of .
The last case gives us ways.
Therefore, the total number of possible ways where there are no isolated men is
Thus, we have
the numerator simplifies to .
The denominator simplifies to
so the whole faction simplifies to
Since is slightly less than 1 when is large, will be close to . They equal each other when .
If we let or , we will notice that the answer is
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.