Difference between revisions of "2011 AIME I Problems/Problem 4"
m (→Solution 1) |
m (→Solution 3 (Bash)) |
||
Line 13: | Line 13: | ||
== Solution 3 (Bash) == | == Solution 3 (Bash) == | ||
− | Project <math>I</math> onto <math>AC</math> and <math>BC</math> as <math>D</math> and <math>E</math>. <math>ID</math> and <math>IE</math> are both in-radii of <math>\triangle ABC</math> so we get right triangles with legs <math>r</math> (the in-radius length) and <math>s - c = 56</math>. Since <math>IC</math> is the hypotenuse for the 4 triangles (<math>\triangle INC, \triangle IMC, \triangle IDC,</math> and <math>\triangle IEC</math>), <math>C, D, M, I, N, E</math> are con-cyclic on a circle we shall denote as <math>\omega</math> which is also the circumcircle of <math>\triangle CMN</math> and <math>\triangle CDE</math>. To find <math>MN</math>, we can use the Law of Cosines on <math>\angle MON \implies MN^2 = 2R^2(1 - \cos{2\angle MCN})</math> where <math>O</math> is the center of <math>\omega</math>. Now, the circumradius <math>R</math> can be found with Pythagorean Theorem with <math>\triangle CDI</math> or <math>\triangle CEI</math>: <math>r^2 + 56^2 = (2R)^2</math>. To find <math>r</math>, we can use the formula <math>rs = [ABC]</math> and by Heron's, <math>[ABC] = \sqrt{181 \cdot 61 \cdot 56 \cdot 64} \implies r = \sqrt{\frac{61 \cdot 56 \cdot 64}{181}} \implies 2R^2 = \frac{393120}{181}</math>. To find <math>\angle MCN</math>, we can find <math>\angle MIN</math> since <math>\angle MCN = 180 - \angle MIN</math>. <math>\angle MIN = \angle MIC + \angle NIC = 180 - \angle BIC + 180 - \angle AIC = 180 - (180 - \frac{\angle A + \angle C}{2}) + 180 - (180 - \frac{\angle B + \angle C}{2}) = \frac{\angle A + \angle B + \angle C}{2} + \frac{\angle C}{2}</math>. Thus, <math>\angle MCN = 180 - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2}</math> and since <math>\angle A + \angle B + \angle C = 180</math>, we have <math>\angle A + \angle B + \angle C - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2} = \frac{\angle A + \angle B}{2}</math>. Plugging this into our Law of Cosines formula gives <math>MN^2 = 2R^2(1 - \cos{\angle A + \angle B}) = 2R^2(1 + \cos{\angle C})</math>. To find <math>\cos{\angle C}</math>, we use LoC on <math>\triangle ABC \implies cos{\angle C} = \frac{120^2 + 117^2 - 125^2}{2 \cdot 117 \cdot 120} = \frac{41 \cdot 19}{117 \cdot 15}</math>. Our formula now becomes <math>MN^2 = \frac{393120}{181} + \frac{2534}{15 \cdot 117}</math>. After simplifying, we get <math>MN^2 = 3136 \implies MN = \boxed{056}</math>. | + | Project <math>I</math> onto <math>AC</math> and <math>BC</math> as <math>D</math> and <math>E</math>. <math>ID</math> and <math>IE</math> are both in-radii of <math>\triangle ABC</math> so we get right triangles with legs <math>r</math> (the in-radius length) and <math>s - c = 56</math>. Since <math>IC</math> is the hypotenuse for the 4 triangles (<math>\triangle INC, \triangle IMC, \triangle IDC,</math> and <math>\triangle IEC</math>), <math>C, D, M, I, N, E</math> are con-cyclic on a circle we shall denote as <math>\omega</math> which is also the circumcircle of <math>\triangle CMN</math> and <math>\triangle CDE</math>. To find <math>MN</math>, we can use the Law of Cosines on <math>\angle MON \implies MN^2 = 2R^2(1 - \cos{2\angle MCN})</math> where <math>O</math> is the center of <math>\omega</math>. Now, the circumradius <math>R</math> can be found with Pythagorean Theorem with <math>\triangle CDI</math> or <math>\triangle CEI</math>: <math>r^2 + 56^2 = (2R)^2</math>. To find <math>r</math>, we can use the formula <math>rs = [ABC]</math> and by Heron's, <math>[ABC] = \sqrt{181 \cdot 61 \cdot 56 \cdot 64} \implies r = \sqrt{\frac{61 \cdot 56 \cdot 64}{181}} \implies 2R^2 = \frac{393120}{181}</math>. To find <math>\angle MCN</math>, we can find <math>\angle MIN</math> since <math>\angle MCN = 180 - \angle MIN</math>. <math>\angle MIN = \angle MIC + \angle NIC = 180 - \angle BIC + 180 - \angle AIC = 180 - (180 - \frac{\angle A + \angle C}{2}) + 180 - (180 - \frac{\angle B + \angle C}{2}) = \frac{\angle A + \angle B + \angle C}{2} + \frac{\angle C}{2}</math>. Thus, <math>\angle MCN = 180 - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2}</math> and since <math>\angle A + \angle B + \angle C = 180</math>, we have <math>\angle A + \angle B + \angle C - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2} = \frac{\angle A + \angle B}{2}</math>. Plugging this into our Law of Cosines formula gives <math>MN^2 = 2R^2(1 - \cos{\angle A + \angle B}) = 2R^2(1 + \cos{\angle C})</math>. To find <math>\cos{\angle C}</math>, we use LoC on <math>\triangle ABC \implies cos{\angle C} = \frac{120^2 + 117^2 - 125^2}{2 \cdot 117 \cdot 120} = \frac{41 \cdot 19}{117 \cdot 15}</math>. Our formula now becomes <math>MN^2 = \frac{393120}{181} + \frac{2534}{15 \cdot 117}</math>. After simplifying, we get <math>MN^2 = 3136 \implies MN = \boxed{056}</math>. |
--lucasxia01 | --lucasxia01 |
Revision as of 21:35, 23 February 2019
Problem 4
In triangle , , and . The angle bisector of angle intersects at point , and the angle bisector of angle intersects at point . Let and be the feet of the perpendiculars from to and , respectively. Find .
Solution 1
Extend and such that they intersect line at points and , respectively. Since is the angle bisector of angle B, and is perpendicular to , so , M is the midpoint of . For the same reason, ,N is the midpoint of . Hence . But , so .
Solution 2
[There seem to be some mislabeled points going on here but the idea is sound.] Let be the incenter of . Now, since and , we have is a cyclic quadrilateral. Consequently, . Since , we have that . Letting be the point of contact of the incircle of with side , we have thus
Solution 3 (Bash)
Project onto and as and . and are both in-radii of so we get right triangles with legs (the in-radius length) and . Since is the hypotenuse for the 4 triangles ( and ), are con-cyclic on a circle we shall denote as which is also the circumcircle of and . To find , we can use the Law of Cosines on where is the center of . Now, the circumradius can be found with Pythagorean Theorem with or : . To find , we can use the formula and by Heron's, . To find , we can find since . . Thus, and since , we have . Plugging this into our Law of Cosines formula gives . To find , we use LoC on . Our formula now becomes . After simplifying, we get .
--lucasxia01
Solution 4
Because , is cyclic.
Ptolemy on CMIN:
by angle addition formula.
.
Let be where the incircle touches , then . , for a final answer of .
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.