Difference between revisions of "2011 AIME I Problems/Problem 4"

m (Solution 2)
m (Solution 1)
 
Line 5: Line 5:
 
== Solution 1 ==  
 
== Solution 1 ==  
 
Extend <math>{CM}</math> and <math>{CN}</math> such that they intersect line <math>{AB}</math> at points <math>P</math> and <math>Q</math>, respectively.  
 
Extend <math>{CM}</math> and <math>{CN}</math> such that they intersect line <math>{AB}</math> at points <math>P</math> and <math>Q</math>, respectively.  
Since <math>{BM}</math> is the angle bisector of angle B, and <math>{CM}</math> is perpendicular to <math>{BM}</math>, so <math>BP=BC=120</math>, M is the midpoint of <math>{CP}</math>. For the same reason, <math>AQ=AC=117</math>,N is the midpoint of <math>{CQ}</math>.
+
Since <math>{BM}</math> is the angle bisector of angle <math>B</math>, and <math>{CM}</math> is perpendicular to <math>{BM}</math>, so <math>BP=BC=120</math>, and <math>M</math> is the midpoint of <math>{CP}</math>. For the same reason, <math>AQ=AC=117</math>, and <math>N</math> is the midpoint of <math>{CQ}</math>.
 
Hence <math>MN=\frac{PQ}{2}</math>. But <math>PQ=BP+AQ-AB=120+117-125=112</math>, so <math>MN=\boxed{056}</math>.
 
Hence <math>MN=\frac{PQ}{2}</math>. But <math>PQ=BP+AQ-AB=120+117-125=112</math>, so <math>MN=\boxed{056}</math>.
  

Latest revision as of 19:27, 10 November 2019

Problem 4

In triangle $ABC$, $AB=125$, $AC=117$ and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.


Solution 1

Extend ${CM}$ and ${CN}$ such that they intersect line ${AB}$ at points $P$ and $Q$, respectively. Since ${BM}$ is the angle bisector of angle $B$, and ${CM}$ is perpendicular to ${BM}$, so $BP=BC=120$, and $M$ is the midpoint of ${CP}$. For the same reason, $AQ=AC=117$, and $N$ is the midpoint of ${CQ}$. Hence $MN=\frac{PQ}{2}$. But $PQ=BP+AQ-AB=120+117-125=112$, so $MN=\boxed{056}$.

Solution 2

[There seem to be some mislabeled points going on here but the idea is sound.] Let $I$ be the incenter of $ABC$. Now, since $AM \perp LC$ and $AN \perp KB$, we have $AMIN$ is a cyclic quadrilateral. Consequently, $\frac{MN}{\sin \angle MIN} = 2R = AI$. Since $\angle MIN = 90 - \frac{\angle BAC}{2} = \cos \angle IAK$, we have that $MN = AI \cdot \cos \angle IAK$. Letting $X$ be the point of contact of the incircle of $ABC$ with side $AC$, we have $AX=MN$ thus $MN=\frac{117+120-125}{2}=\boxed{056}$

Solution 3 (Bash)

Project $I$ onto $AC$ and $BC$ as $D$ and $E$. $ID$ and $IE$ are both in-radii of $\triangle ABC$ so we get right triangles with legs $r$ (the in-radius length) and $s - c = 56$. Since $IC$ is the hypotenuse for the 4 triangles ($\triangle INC, \triangle IMC, \triangle IDC,$ and $\triangle IEC$), $C, D, M, I, N, E$ are con-cyclic on a circle we shall denote as $\omega$ which is also the circumcircle of $\triangle CMN$ and $\triangle CDE$. To find $MN$, we can use the Law of Cosines on $\angle MON \implies MN^2 = 2R^2(1 - \cos{2\angle MCN})$ where $O$ is the center of $\omega$. Now, the circumradius $R$ can be found with Pythagorean Theorem with $\triangle CDI$ or $\triangle CEI$: $r^2 + 56^2 = (2R)^2$. To find $r$, we can use the formula $rs = [ABC]$ and by Heron's, $[ABC] = \sqrt{181 \cdot 61 \cdot 56 \cdot 64} \implies r = \sqrt{\frac{61 \cdot 56 \cdot 64}{181}} \implies 2R^2 = \frac{393120}{181}$. To find $\angle MCN$, we can find $\angle MIN$ since $\angle MCN = 180 - \angle MIN$. $\angle MIN = \angle MIC + \angle NIC = 180 - \angle BIC + 180 - \angle AIC = 180 - (180 - \frac{\angle A + \angle C}{2}) + 180 - (180 - \frac{\angle B + \angle C}{2}) = \frac{\angle A + \angle B + \angle C}{2} + \frac{\angle C}{2}$. Thus, $\angle MCN = 180 - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2}$ and since $\angle A + \angle B + \angle C = 180$, we have $\angle A + \angle B + \angle C - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2} = \frac{\angle A + \angle B}{2}$. Plugging this into our Law of Cosines formula gives $MN^2 = 2R^2(1 - \cos{\angle A + \angle B}) = 2R^2(1 + \cos{\angle C})$. To find $\cos{\angle C}$, we use LoC on $\triangle ABC \implies cos{\angle C} = \frac{120^2 + 117^2 - 125^2}{2 \cdot 117 \cdot 120} = \frac{41 \cdot 19}{117 \cdot 15}$. Our formula now becomes $MN^2 = \frac{393120}{181} + \frac{2534}{15 \cdot 117}$. After simplifying, we get $MN^2 = 3136 \implies MN = \boxed{056}$.

--lucasxia01

Solution 4

Because $\angle CMI = \angle CNI = 90$, $CMIN$ is cyclic.

Ptolemy on CMIN:

$CN*MI+CM*IN=CI*MN$

$CI^2(\cos \angle ICN \sin \angle ICM + \cos \angle ICM \sin \angle ICN) = CI * MN$

$MN = CI \sin \angle MCN$ by angle addition formula.

$\angle MCN = 180 - \angle MIN = 90 - \angle BCI$.

Let $H$ be where the incircle touches $BC$, then $CI \cos \angle BCI = CH = \frac{a+b-c}{2}$. $a=120, b=117, c=125$, for a final answer of $\boxed{056}$.

See also

2011 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS