Difference between revisions of "2011 AMC 10A Problems/Problem 18"

(Solution)
m (Solution)
Line 6: Line 6:
  
 
Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can compute the shades area as the area of half of <math>C</math> plus the area of the rectangle minus the area of the two sectors created by <math>A</math> and <math>B</math>. This is <math>\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}</math>.
 
Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can compute the shades area as the area of half of <math>C</math> plus the area of the rectangle minus the area of the two sectors created by <math>A</math> and <math>B</math>. This is <math>\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}</math>.
 +
 +
== See Also ==
 +
 +
 +
{{AMC10 box|year=2011|ab=A|num-b=17|num-a=19}}

Revision as of 10:47, 8 May 2011

Problem 18

Circles $A, B,$ and $C$ each have radius 1. Circles $A$ and $B$ share one point of tangency. Circle $C$ has a point of tangency with the midpoint of $\overline{AB}$. What is the area inside Circle $C$ but outside circle $A$ and circle $B$ ?

Solution

Draw a rectangle with vertices at the centers of $A$ and $B$ and the intersection of $A, C$ and $B, C$. Then, we can compute the shades area as the area of half of $C$ plus the area of the rectangle minus the area of the two sectors created by $A$ and $B$. This is $\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}$.

See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions