2011 AMC 10B Problems/Problem 17

Revision as of 14:26, 15 February 2016 by Pulusona (talk | contribs) (See Allso)

Problem

In the given circle, the diameter $\overline{EB}$ is parallel to $\overline{DC}$, and $\overline{AB}$ is parallel to $\overline{ED}$. The angles $AEB$ and $ABE$ are in the ratio $4 : 5$. What is the degree measure of angle $BCD$?

[asy] unitsize(7mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  real r=3; pair A=(-3cos(80),-3sin(80)); pair D=(3cos(80),3sin(80)), C=(-3cos(80),3sin(80)); pair O=(0,0), E=(-3,0), B=(3,0); path outer=Circle(O,r); draw(outer); draw(E--B); draw(E--A); draw(B--A); draw(E--D); draw(C--D); draw(B--C);  pair[] ps={A,B,C,D,E,O}; dot(ps);  label("$A$",A,N); label("$B$",B,NE); label("$C$",C,S); label("$D$",D,S); label("$E$",E,NW); label("$$",O,N); [/asy]

$\textbf{(A)}\ 120 \qquad\textbf{(B)}\ 125 \qquad\textbf{(C)}\ 130 \qquad\textbf{(D)}\ 135 \qquad\textbf{(E)}\ 140$

Solution

We can let $\angle AEB$ be $4x$ and $\angle ABE$ be $5x$ because they are in the ratio $4 : 5$. When an inscribed angle contains the diameter, the inscribed angle is a right angle. Therefore by triangle sum theorem, $4x+5x+90=180 \longrightarrow x=10$ and $\angle ABE = 50$.

$\angle ABE = \angle BED$ because they are alternate interior angles and $\overline{AB} \parallel \overline{ED}$. Opposite angles in a cyclic quadrilateral are supplementary, so $\angle BED + \angle BCD = 180$. Use substitution to get $\angle ABE + \angle BCD = 180 \longrightarrow 50 + \angle BCD = 180 \longrightarrow \angle BCD = \boxed{\textbf{(C)} 130}$

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS