Difference between revisions of "2011 AMC 10B Problems/Problem 18"

(Problem)
(Solution)
Line 37: Line 37:
 
</center>
 
</center>
  
It is given that <math>\angle AMD \cong \angle CMD</math>. Since <math>\angle AMD</math> and <math>\angle CDM</math> are [[alternate interior angles]] and <math>\overline{AB} \parallel \overline{DC}</math>, <math>\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM</math>. Use the [[Base Angle Theorem]] to show <math>\overline{DC} \cong \overline{MC}</math>. We know that <math>ABCD</math> is a [[rectangle]], so it follows that <math>\overline{MC} = 6</math>. We notice that <math>\triangle BMC</math> is a <math>30-60-90</math> triangle, and <math>\angle BMC = 30^{\circ}</math>. If we let <math>x</math> be the measure of <math>\angle AMD,</math> then
+
It is given that <math>\angle AMD \sim \angle CMD</math>. Since <math>\angle AMD</math> and <math>\angle CDM</math> are [[alternate interior angles]] and <math>\overline{AB} \parallel \overline{DC}</math>, <math>\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM</math>. Use the [[Base Angle Theorem]] to show <math>\overline{DC} \cong \overline{MC}</math>. We know that <math>ABCD</math> is a [[rectangle]], so it follows that <math>\overline{MC} = 6</math>. We notice that <math>\triangle BMC</math> is a <math>30-60-90</math> triangle, and <math>\angle BMC = 30^{\circ}</math>. If we let <math>x</math> be the measure of <math>\angle AMD,</math> then
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
2x + 30 &= 180\\
 
2x + 30 &= 180\\

Revision as of 13:13, 5 February 2017

Problem

Rectangle $ABCD$ has $AB = 6$ and $BC = 3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?

$\textbf{(A)}\ 15 \qquad\textbf{(B)}\ 30 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 60 \qquad\textbf{(E)}\ 75$

Solution

[asy] unitsize(10mm); defaultpen(linewidth(.5pt)+fontsize(10pt)); dotfactor=3;  pair A=(0,3), B=(6,3), C=(6,0), D=(0,0); pair M=(0.80385,3);  draw(A--B--C--D--cycle); draw(M--C); draw(M--D); draw(anglemark(A,M,D)); draw(anglemark(D,M,C)); draw(anglemark(C,D,M));  pair[] ps={A,B,C,D,M}; dot(ps); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$M$",M,N); label("$6$",midpoint(C--M),SW); label("$6$",midpoint(A--B),N); label("$3$",midpoint(B--C),E);  [/asy]

It is given that $\angle AMD \sim \angle CMD$. Since $\angle AMD$ and $\angle CDM$ are alternate interior angles and $\overline{AB} \parallel \overline{DC}$, $\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM$. Use the Base Angle Theorem to show $\overline{DC} \cong \overline{MC}$. We know that $ABCD$ is a rectangle, so it follows that $\overline{MC} = 6$. We notice that $\triangle BMC$ is a $30-60-90$ triangle, and $\angle BMC = 30^{\circ}$. If we let $x$ be the measure of $\angle AMD,$ then \begin{align*} 2x + 30 &= 180\\ 2x &= 150\\ x &= \boxed{\textbf{(E)} 75} \end{align*}

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS