2011 AMC 10B Problems/Problem 18

Revision as of 13:13, 5 February 2017 by Firemage359 (talk | contribs) (Solution)

Problem

Rectangle $ABCD$ has $AB = 6$ and $BC = 3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?

$\textbf{(A)}\ 15 \qquad\textbf{(B)}\ 30 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 60 \qquad\textbf{(E)}\ 75$

Solution

[asy] unitsize(10mm); defaultpen(linewidth(.5pt)+fontsize(10pt)); dotfactor=3;  pair A=(0,3), B=(6,3), C=(6,0), D=(0,0); pair M=(0.80385,3);  draw(A--B--C--D--cycle); draw(M--C); draw(M--D); draw(anglemark(A,M,D)); draw(anglemark(D,M,C)); draw(anglemark(C,D,M));  pair[] ps={A,B,C,D,M}; dot(ps); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$M$",M,N); label("$6$",midpoint(C--M),SW); label("$6$",midpoint(A--B),N); label("$3$",midpoint(B--C),E);  [/asy]

It is given that $\angle AMD \sim \angle CMD$. Since $\angle AMD$ and $\angle CDM$ are alternate interior angles and $\overline{AB} \parallel \overline{DC}$, $\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM$. Use the Base Angle Theorem to show $\overline{DC} \cong \overline{MC}$. We know that $ABCD$ is a rectangle, so it follows that $\overline{MC} = 6$. We notice that $\triangle BMC$ is a $30-60-90$ triangle, and $\angle BMC = 30^{\circ}$. If we let $x$ be the measure of $\angle AMD,$ then \begin{align*} 2x + 30 &= 180\\ 2x &= 150\\ x &= \boxed{\textbf{(E)} 75} \end{align*}

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS