Difference between revisions of "2011 AMC 10B Problems/Problem 19"

(Solution)
(15 intermediate revisions by 8 users not shown)
Line 5: Line 5:
 
<math> \textbf{(A)}\ -64 \qquad\textbf{(B)}\ -24 \qquad\textbf{(C)}\ -9 \qquad\textbf{(D)}\ 24 \qquad\textbf{(E)}\ 576</math>
 
<math> \textbf{(A)}\ -64 \qquad\textbf{(B)}\ -24 \qquad\textbf{(C)}\ -9 \qquad\textbf{(D)}\ 24 \qquad\textbf{(E)}\ 576</math>
  
== Solution ==
+
== Solution 1 ==
  
 
First, square both sides, and isolate the absolute value.
 
First, square both sides, and isolate the absolute value.
Line 11: Line 11:
 
5|x|+8&=x^2-16\\
 
5|x|+8&=x^2-16\\
 
5|x|&=x^2-24\\
 
5|x|&=x^2-24\\
|x|&=\frac{x^2-24}{5}</cmath>
+
|x|&=\frac{x^2-24}{5}. \\
 +
\end{align*}</cmath>
 
Solve for the absolute value and factor.
 
Solve for the absolute value and factor.
<cmath>x=\frac{x^2-24}{5} \longrightarrow 5x=x^2-24 \longrightarrow 0=x^2-5x-24 \longrightarrow (x-8)(x+3)=0\\
 
x=\frac{24-x^2}{5} \longrightarrow 5x=24-x^2 \longrightarrow 0=x^2+5x-24 \longrightarrow (x+8)(x-3)=0</cmath>
 
<cmath>x= -8, -3, 3, 8</cmath>
 
  
However, this is not the final answer. Plug it back into the original equation to ensure it still works. Whether the number is positive or negative does not matter since the absolute value or square will cancel it out anyways.
+
Case 1: <math>x=\frac{x^2-24}{5}</math>
<cmath>\sqrt{5|3|+8}=\sqrt{3^2-16} \longrightarrow\sqrt{15+8}=\sqrt{9-16} \longrightarrow \sqrt{23}\not=\sqrt{-5-16}\\
+
 
\sqrt{5|8|+8}=\sqrt{8^2-16} \longrightarrow \sqrt{40+8}=\sqrt{64-16} \longrightarrow \sqrt{48}=\sqrt{48}</cmath>
+
Multiplying both sides by <math>5</math> gives us
The roots of this equation are <math>-8</math> and <math>8</math> and product is <math>-8 \times 8 = \boxed{\textbf{(A)} -64}</math>
+
<cmath> 5x=x^2-24.</cmath>
 +
Rearranging and factoring, we have
 +
<cmath>\begin{align*}
 +
x^2-5x-24 &=0, \\
 +
(x-8)(x+3) &= 0.\\
 +
\end{align*}</cmath>
 +
 
 +
Case 2: <math>x=\frac{-x^2+24}{5}</math>
 +
 
 +
As above, we multiply both sides by <math>5</math> to find
 +
<cmath> 5x=-x^2+24.</cmath>
 +
Rearranging and factoring gives us
 +
<cmath>\begin{align*}
 +
x^2+5x-24 &=0, \\
 +
(x+8)(x-3) &= 0. \\
 +
\end{align*}</cmath>
 +
 
 +
Combining these cases, we have <math>x= -8, -3, 3, 8</math>. Because our first step of squaring is not reversible, however, we need to check for extraneous solutions. Plug each solution for <math>x</math> back into the original equation to ensure it works. Whether the number is positive or negative does not matter since the absolute value or square will cancel it out anyways.
 +
Trying <math>|x|=|3|</math>, we have
 +
<cmath>\begin{align*}
 +
\sqrt{5|3|+8}&=\sqrt{3^2-16}, \\
 +
\sqrt{15+8}&=\sqrt{9-16}, \\
 +
\sqrt{23} &\not= \sqrt{-7}.\\
 +
\end{align*}</cmath>
 +
Therefore, <math>x = 3</math> and <math> x= -3</math> are extraneous.
 +
 
 +
Checking <math>|x|=|8|</math>, we have
 +
<cmath>\begin{align*}
 +
\sqrt{5|8|+8}&=\sqrt{8^2-16}, \\
 +
\sqrt{40+8}&=\sqrt{64-16}, \\
 +
\sqrt{48}&=\sqrt{48}.\\
 +
\end{align*}</cmath>
 +
 
 +
The roots of our original equation are <math>-8</math> and <math>8</math> and product is <math>-8 \times 8 = \boxed{\textbf{(A)} -64}</math>.
 +
 
 +
== Solution 2 ==
 +
 
 +
Square both sides, to get <math>5|x| + 8 = x^2-16</math>. Rearrange to get <math>x^2 - 5|x| - 24 = 0</math>. Seeing that <math>x^2 = |x|^2</math>, substitute to get <math>|x|^2 - 5|x| - 24 = 0</math>. We see that this is a quadratic in <math>|x|</math>. Factoring, we get <math>(|x|-8)(|x|+3) = 0</math>, so <math>|x| = \{8,-3\}</math>. Since the radicand of the equation can't be negative, the sole solution is <math>|x| = 8</math>. Therefore, the x can be <math>8</math> or <math>-8</math>. The product is then <math>-8 \times 8 = \boxed{\textbf{(A)} -64}</math>.
 +
 
 +
==Video Solution==
 +
https://youtu.be/ubGzkmVyAwE
 +
 
 +
~savannahsolver
  
 
== See Also==
 
== See Also==
  
 
{{AMC10 box|year=2011|ab=B|num-b=18|num-a=20}}
 
{{AMC10 box|year=2011|ab=B|num-b=18|num-a=20}}
 +
{{MAA Notice}}

Revision as of 19:57, 29 December 2020

Problem

What is the product of all the roots of the equation \[\sqrt{5 | x | + 8} = \sqrt{x^2 - 16}.\]

$\textbf{(A)}\ -64 \qquad\textbf{(B)}\ -24 \qquad\textbf{(C)}\ -9 \qquad\textbf{(D)}\ 24 \qquad\textbf{(E)}\ 576$

Solution 1

First, square both sides, and isolate the absolute value. \begin{align*} 5|x|+8&=x^2-16\\ 5|x|&=x^2-24\\ |x|&=\frac{x^2-24}{5}. \\ \end{align*} Solve for the absolute value and factor.

Case 1: $x=\frac{x^2-24}{5}$

Multiplying both sides by $5$ gives us \[5x=x^2-24.\] Rearranging and factoring, we have \begin{align*} x^2-5x-24 &=0, \\ (x-8)(x+3) &= 0.\\ \end{align*}

Case 2: $x=\frac{-x^2+24}{5}$

As above, we multiply both sides by $5$ to find \[5x=-x^2+24.\] Rearranging and factoring gives us \begin{align*} x^2+5x-24 &=0, \\ (x+8)(x-3) &= 0. \\ \end{align*}

Combining these cases, we have $x= -8, -3, 3, 8$. Because our first step of squaring is not reversible, however, we need to check for extraneous solutions. Plug each solution for $x$ back into the original equation to ensure it works. Whether the number is positive or negative does not matter since the absolute value or square will cancel it out anyways. Trying $|x|=|3|$, we have \begin{align*} \sqrt{5|3|+8}&=\sqrt{3^2-16}, \\ \sqrt{15+8}&=\sqrt{9-16}, \\ \sqrt{23} &\not= \sqrt{-7}.\\ \end{align*} Therefore, $x = 3$ and $x= -3$ are extraneous.

Checking $|x|=|8|$, we have \begin{align*} \sqrt{5|8|+8}&=\sqrt{8^2-16}, \\ \sqrt{40+8}&=\sqrt{64-16}, \\ \sqrt{48}&=\sqrt{48}.\\ \end{align*}

The roots of our original equation are $-8$ and $8$ and product is $-8 \times 8 = \boxed{\textbf{(A)} -64}$.

Solution 2

Square both sides, to get $5|x| + 8 = x^2-16$. Rearrange to get $x^2 - 5|x| - 24 = 0$. Seeing that $x^2 = |x|^2$, substitute to get $|x|^2 - 5|x| - 24 = 0$. We see that this is a quadratic in $|x|$. Factoring, we get $(|x|-8)(|x|+3) = 0$, so $|x| = \{8,-3\}$. Since the radicand of the equation can't be negative, the sole solution is $|x| = 8$. Therefore, the x can be $8$ or $-8$. The product is then $-8 \times 8 = \boxed{\textbf{(A)} -64}$.

Video Solution

https://youtu.be/ubGzkmVyAwE

~savannahsolver

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png