Difference between revisions of "2011 AMC 10B Problems/Problem 23"

(Solution)
Line 3: Line 3:
 
What is the hundreds digit of <math>2011^{2011}</math>?
 
What is the hundreds digit of <math>2011^{2011}</math>?
  
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8</math>
+
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9</math>
  
 
==Solution==
 
==Solution==
 +
Since <math>2011 \equiv 11  (\text{mod }1000),</math> we know <math>2011^{2011} \equiv 11^{2011}  (\text{mod }1000).</math>
  
modulus method
+
To compute this, write it as <math>(1+10)^{2011}</math> and use the [[binomial theorem]].
  
 +
<cmath>1^{2011} + 2011 \cdot 1^{2010}10^1 + \frac{2011 \cdot 2010}{2} 1^{2009}10^{2} + \cdots</cmath>
 +
From then on the power of <math>10</math> is greater than <math>3</math> and cancel out with <math>\text{mod }1000.</math>
 +
<cmath>\begin{align*}
 +
11^{2011} &\equiv 1 + 20110 + 100\frac{11 \cdot 10}{2}\\
 +
&= 1 + 20110 + 5500\\
 +
&\equiv 1 + 110 + 500\\
 +
&=611
 +
\end{align*}</cmath>
  
(2000  + 11) ^ 2011 mod 1000 \n
+
Therefore, the hundreds digit is <math>\boxed{\textbf{(D) } 6}</math>
 
 
11^2011 mod 1000
 
 
 
(10 + 1)^2011 mod 1000
 
 
 
2011C2 * 10^2 + 2011C1 * 10 + 1    mod 1000
 
 
 
500 + 110 + 1  mod 1000
 
 
 
611 mod 1000
 
 
 
So we know the last three digits of 2011 ^ 2011 is 611, and so the hundreds digit is 6 (D).
 
 
 
 
 
pascal's triangle method
 
 
 
 
 
First we try some multiplications. But we will only look at some of the last digits
 
 
 
First, we see that 2011 ^ 2 gives the 3 last digits 121
 
 
 
Then 2011 ^ 3 gives 1331
 
 
 
2011 ^ 4 gives 2641
 
 
 
If we continue, we eventually see that the thousand's term and the hundred's term are part of the triangle numbers, and is part of the pascal triangle.
 
 
 
The hundred's digit is the last digit of the nth triangle number, which in our case is 2011.
 
 
 
Therefore, we just do 2011(2012) / 2 => last digit is 6 (D).
 

Revision as of 15:18, 4 June 2011

Problem

What is the hundreds digit of $2011^{2011}$?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9$

Solution

Since $2011 \equiv 11  (\text{mod }1000),$ we know $2011^{2011} \equiv 11^{2011}   (\text{mod }1000).$

To compute this, write it as $(1+10)^{2011}$ and use the binomial theorem.

\[1^{2011} + 2011 \cdot 1^{2010}10^1 + \frac{2011 \cdot 2010}{2} 1^{2009}10^{2} + \cdots\] From then on the power of $10$ is greater than $3$ and cancel out with $\text{mod }1000.$ \begin{align*} 11^{2011} &\equiv 1 + 20110 + 100\frac{11 \cdot 10}{2}\\ &= 1 + 20110 + 5500\\ &\equiv 1 + 110 + 500\\ &=611 \end{align*}

Therefore, the hundreds digit is $\boxed{\textbf{(D) } 6}$