Difference between revisions of "2011 AMC 10B Problems/Problem 23"

(Added a sidenote.)
(Fixed sidenote)
Line 19: Line 19:
 
Therefore, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math>
 
Therefore, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math>
  
Sidenote: By [[Euler's Totient Theorem]], <math>a^{\phi 1000} \equiv a \pmod 1000</math>, so <math>a^{400} \equiv a \pmod 1000</math> and <math>11^{2011} \equiv 11^{11} \pmod 1000</math>. We can then proceed using the clever application of the Binomial Theorem.
+
Sidenote: By [[Euler's Totient Theorem]], <math>a^{\phi (1000)} \equiv a \pmod{1000}</math> for any <math>a</math>, so <math>a^{400} \equiv a \pmod{1000}</math> and <math>11^{2011} \equiv 11^{11} \pmod{1000}</math>. We can then proceed using the clever application of the Binomial Theorem.
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 18:05, 22 December 2018

Problem

What is the hundreds digit of $2011^{2011}?$

$\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) }5 \qquad \textbf{(D) } 6 \qquad \textbf{(E) } 9$

Solution 1

Since $2011 \equiv 11  \pmod{1000},$ we know that $2011^{2011} \equiv 11^{2011}  \pmod{1000}.$

To compute this, we use a clever application of the binomial theorem.

$\begin{aligned} 11^{2011} &= (1+10)^{2011} \\ &= 1 + \dbinom{2011}{1} \cdot 10 + \dbinom{2011}{2} \cdot 10^2 + \cdots \end{aligned}$

In all of the other terms, the power of $10$ is greater than $3$ and so is equivalent to $0$ modulo $1000,$ which means we can ignore it. We have:

$\begin{aligned}11^{2011} &\equiv 1 + 2011\cdot 10 + \dfrac{2011 \cdot 2010}{2} \cdot 100 \\ &\equiv 1+20110 + \dfrac{11\cdot 10}{2} \cdot 100\\ &= 1 + 20110 + 5500\\ &\equiv 1 + 110 + 500\\&=611 \pmod{1000} \end{aligned}$

Therefore, the hundreds digit is $\boxed{\textbf{(D) } 6}.$

Sidenote: By Euler's Totient Theorem, $a^{\phi (1000)} \equiv a \pmod{1000}$ for any $a$, so $a^{400} \equiv a \pmod{1000}$ and $11^{2011} \equiv 11^{11} \pmod{1000}$. We can then proceed using the clever application of the Binomial Theorem.

Solution 2

We need to compute $2011^{2011} \pmod{1000}.$ By the Chinese Remainder Theorem, it suffices to compute $2011^{2011} \pmod{8}$ and $2011^{2011} \pmod{125}.$

In modulo $8,$ we have $2011^4 \equiv 1 \pmod{8}$ by Euler's Theorem, and also $2011 \equiv 3 \pmod{8},$ so we have \[2011^{2011} = (2011^4)^{502} \cdot 2011^3 \equiv 1^{502} \cdot 3^3 \equiv 3 \pmod{8}.\]

In modulo $125,$ we have $2011^{100} \equiv 1 \pmod{125}$ by Euler's Theorem, and also $2011 \equiv 11 \pmod{125}.$ Therefore, we have $\begin{aligned} 2011^{2011} &= (2011^{100})^{20} \cdot 2011^{11} \\ &\equiv 1^{20} \cdot 11^{11} \\ &= 121^5 \cdot 11 \\ &= (-4)^5 \cdot 11 = -1024 \cdot 11 \\ &\equiv -24 \cdot 11 = -264 \\ &\equiv 111 \pmod{125}. \end{aligned}$

After finding the solution $2011^{2011} \equiv 611 \pmod{1000},$ we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is $\boxed{\textbf{(D) } 6}.$

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png