# Difference between revisions of "2011 AMC 10B Problems/Problem 9"

## Problem

The area of $\triangle$$EBD$ is one third of the area of $\triangle$$ABC$. Segment $DE$ is perpendicular to segment $AB$. What is $BD$?

$[asy] unitsize(10mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,0), B=(5,0), C=(1.8,2.4), D=(5-4sqrt(3)/3,0), E=(5-4sqrt(3)/3,sqrt(3)); pair[] ps={A,B,C,D,E}; draw(A--B--C--cycle); draw(E--D); draw(rightanglemark(E,D,B)); dot(ps); label("A",A,SW); label("B",B,SE); label("C",C,N); label("D",D,S); label("E",E,NE); label("3",midpoint(A--C),NW); label("4",midpoint(C--B),NE); label("5",midpoint(A--B),SW); [/asy]$

$\textbf{(A)}\ \frac{4}{3} \qquad\textbf{(B)}\ \sqrt{5} \qquad\textbf{(C)}\ \frac{9}{4} \qquad\textbf{(D)}\ \frac{4\sqrt{3}}{3} \qquad\textbf{(E)}\ \frac{5}{2}$

## Solution

$\triangle ABC \sim \triangle EBD$ by AA Similarity. Therefore $DE = \frac{3}{4} BD$. Find the areas of the triangles. $$\triangle ABC: 3 \times 4 \times \frac{1}{2} = 6$$ $$\triangle EBD: BD \times \frac{3}{4} BD \times \frac{1}{2} = \frac{3}{8} BD ^2$$ The area of $\triangle EBD$ is one third of the area of $\triangle ABC$. \begin{align*} \frac{3}{8} BD^2 &= 6 \times \frac{1}{3}\\ 9BD^2 &= 48\\ BD^2 &= \frac{16}{3}\\ BD &= \boxed{\textbf{(D)} \frac{4\sqrt{3}}{3}} \end{align*}

## Solution 2

$\triangle ABC \sim \triangle EBD$ by AA Similarity. Since the area of $\triangle EBD$ is $\frac{1}{3}$ of $\triangle ABC$ and the bases/heights are in the same ratio, we use the formula forarea of a triangle for these ratios. Thus, $$\frac{1}{3}[\triangle ABC] = [\triangle EBD]$$ $$\frac{1}{3} \times \frac{1}{2} \times AC \times BC = \frac{1}{2} \times ED \times DB$$ In order to scale the sides of ED and DB to make $\frac{1}{3}$ (since the ratios of sides are the same), we take the square root of $\frac{1}{3} = \frac{\sqrt(3)}{3}$ to scale each side by the same amount.

Thus $BD = 4 \times \frac{\sqrt(3)}{3}$ and the answer is $BD = \boxed{\textbf{(D)} \frac{4\sqrt{3}}{3}}$

 2011 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 8 Followed byProblem 10 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions