Difference between revisions of "2011 AMC 12A Problems/Problem 13"

m (Problem)
m (Solution: made it look better)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
Let <math>O</math> be the incenter. Because <math>MO \parallel BC</math> and <math>BO</math> is the angle bisector, we have  
+
Let <math>O</math> be the incenter of <math>\triangle{ABC}</math>. Because <math>\overline{MO} \parallel \overline{BC}</math> and <math>\overline{BO}</math> is the angle bisector of <math>\angle{ABC}</math>, we have  
  
 
<cmath>\angle{MBO} = \angle{CBO} = \angle{MOB} = \frac{1}{2}\angle{MBC}</cmath>
 
<cmath>\angle{MBO} = \angle{CBO} = \angle{MOB} = \frac{1}{2}\angle{MBC}</cmath>

Revision as of 14:46, 2 November 2019

Problem

Triangle $ABC$ has side-lengths $AB = 12, BC = 24,$ and $AC = 18.$ The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N.$ What is the perimeter of $\triangle AMN?$

$\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\  33 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 42$

Solution

Let $O$ be the incenter of $\triangle{ABC}$. Because $\overline{MO} \parallel \overline{BC}$ and $\overline{BO}$ is the angle bisector of $\angle{ABC}$, we have

\[\angle{MBO} = \angle{CBO} = \angle{MOB} = \frac{1}{2}\angle{MBC}\]

It then follows due to alternate interior angles and base angles of isosceles triangles that $MO = MB$. Similarly, $NO = NC$. The perimeter of $\triangle{AMN}$ then becomes \begin{align*} AM + MN + NA &= AM + MO + NO + NA \\ &= AM + MB + NC + NA \\ &= AB + AC \\ &= 30 \rightarrow \boxed{(B)} \end{align*}

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png