Difference between revisions of "2011 AMC 12A Problems/Problem 15"

(Solution)
(Solution)
Line 21: Line 21:
 
<math> OM = \frac{6}{\sqrt{6^2 - 2^2}} \times 2 = \frac{3\sqrt{2}}{2} </math>
 
<math> OM = \frac{6}{\sqrt{6^2 - 2^2}} \times 2 = \frac{3\sqrt{2}}{2} </math>
  
The length of the square base is thus <math>2 \times \frac{3\sqrt{2}}{2} = 3\sqrt{2} \rightarrow \boxed{\textbf{}}</math>
+
The length of the square base is thus <math>2 \times \frac{3\sqrt{2}}{2} = 3\sqrt{2} \rightarrow \boxed{\textbf{A}}</math>
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2011|num-b=14|num-a=16|ab=A}}
 
{{AMC12 box|year=2011|num-b=14|num-a=16|ab=A}}

Revision as of 22:15, 11 February 2011

Problem

The circular base of a hemisphere of radius $2$ rests on the base of a square pyramid of height $6$. The hemisphere is tangent to the other four faces of the pyramid. What is the edge-length of the base of the pyramid?

$\textbf{(A)}\ 3\sqrt{2} \qquad \textbf{(B)}\ \frac{13}{3} \qquad \textbf{(C)}\ 4\sqrt{2} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ \frac{13}{2}$

Solution

Let $ABCDE$ be the pyramid with $ABCD$ as the square base. Let $O$ and $M$ be the center of square $ABCD$ and the midpoint of length $AB$ respectively. Lastly, let the hemisphere be tangent to the triangular face $ABE$ at $P$.

Notice that $\triangle EOM$ has a right angle at $E$. Since the hemisphere be tangent to the triangular face $ABE$ at $P$, $\angle EPO$ is also $90^{\circ}$. Hence $\triangle EOM$ is similar to $\triangle EPO$.

$\frac{OM}{2} = \frac{6}{EP}$

$OM = \frac{6}{EP} \times 2$

$OM = \frac{6}{\sqrt{6^2 - 2^2}} \times 2 = \frac{3\sqrt{2}}{2}$

The length of the square base is thus $2 \times \frac{3\sqrt{2}}{2} = 3\sqrt{2} \rightarrow \boxed{\textbf{A}}$

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions