2011 AMC 12A Problems/Problem 16

Revision as of 20:51, 8 April 2013 by JWK750 (talk | contribs) (See also)

Problem

Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible?

$\textbf{(A)}\ 2520 \qquad \textbf{(B)}\ 2880 \qquad \textbf{(C)}\ 3120 \qquad \textbf{(D)}\ 3250 \qquad \textbf{(E)}\ 3750$

Solution

We can do some casework when working our way around the pentagon from $A$ to $E$. At each stage, there will be a makeshift diagram.

1.) For $A$, we can choose any of the 6 colors.

        A : 6

2.) For $B$, we can either have the same color as $A$, or any of the other 5 colors. We do this because each vertex of the pentagon is affected by the 2 opposite vertices, and $D$ will be affected by both $A$ and $B$.

      A : 6
 B:1        B:5

3.) For $C$, we cannot have the same color as $A$. Also, we can have the same color as $B$ ($E$ will be affected), or any of the other 4 colors. Because $C$ can't be the same as $A$, it can't be the same as $B$ if $B$ is the same as $A$, so it can be any of the 5 other colors.

      A : 6
 B:1        B:5
 C:5     C:4   C:1

4.) $D$ is affected by $A$ and $B$. If they are the same, then $D$ can be any of the other 5 colors. If they are different, then $D$ can be any of the (6-2)=4 colors.

      A : 6
 B:1        B:5
 C:5     C:4   C:1
 D:5     D:4   D:4

5.) $E$ is affected by $B$ and $C$. If they are the same, then $E$ can be any of the other 5 colors. If they are different, then $E$ can be any of the (6-2)=4 colors.

      A : 6
 B:1        B:5
 C:5     C:4   C:1
 D:5     D:4   D:4
 E:4     E:4   E:5

6.) Now, we can multiply these three paths and add them: $(6\times1\times5\times5\times4)+(6\times5\times4\times4\times4)+(6\times5\times1\times4\times5)=600+1920+600=3120$

7.) Our answer is $C$!

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions