2011 AMC 12A Problems/Problem 24

Revision as of 21:04, 22 September 2013 by Armalite46 (talk | contribs) (Solution 2)

Problem

Consider all quadrilaterals $ABCD$ such that $AB=14$, $BC=9$, $CD=7$, and $DA=12$. What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral?

$\textbf{(A)}\ \sqrt{15} \qquad \textbf{(B)}\ \sqrt{21} \qquad \textbf{(C)}\ 2\sqrt{6} \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 2\sqrt{7}$

Solution

Solution 1

Note as above that ABCD must be cyclic to obtain the circle with maximal radius. Let $E$, $F$, $G$, and $H$ be the points on $AB$, $BC$, $CD$, and $DA$ respectively where the circle is tangent. Let $\theta=\angle BAD$ and $\alpha=\angle ADC$. Since the quadrilateral is cyclic, $\angle ABC=180^{\circ}-\alpha$ and $\angle BCD=180^{\circ}-\theta$. Let the circle have center $O$ and radius $r$. Note that $OHD$, $OGC$, $OFB$, and $OEA$ are right angles.

Hence $FOG=\theta$, $GOH=180^{\circ}-\alpha$, $EOH=180^{\circ}-\theta$, and $FBE=\alpha$.

Therefore, $AEOH\sim OFCG$ and $EBFO\sim HOGD$.

Let $x=CG$. Then $CF=x$, $BF=BE=9-x$, $GD=DH=7-x$, and $AH=AE=x+5$. Using $AEOH\sim OFCG$ and $EBFO\sim HOGD$ we have $r/(x+5)=x/r$, and $(9-x)/r=r/(7-x)$. By equating the value of $r^2$ from each, $x(x+5)=(7-x)(9-x)$. Solving we obtain $x=3$ so that $\boxed{\textbf{(C)}\ 2\sqrt{6}}$.

Solution 2

To maximize the radius of the circle, we also need to maximize the area. To maximize the area of the circle, the quadrilateral must be tangential (have an incircle). In a tangential quadrilateral, the sum of a of opposite sides is equal to the semiperimeter of the quadrilateral. So, $14+7=12+9$. Therefore, it has an incircle. By definition, a cyclic quadrilateral has the maximum area for a quadrilateral with corresponding side lengths. Therefore, to maximize the area of the quadrilateral and thus the incircle, we assume that this quadrilateral is cyclic.

For cyclic quadrilaterals, the area is $\sqrt{(s-a)(s-b)(s-c)(s-d)}$ where $s$ is the semiperimeter of the cyclic quadrilateral and $a, b, c,$ and $d$ are the sides of the quadrilateral. Compute this area to get $42\sqrt{6}$. The area of a tangential quadrilateral is given by the $rs$ formula, where $rs=A$. We can substitute $s$, the semiperimeter, and $A$, the area and solve for r to get $\boxed{\textbf{(C)}\ 2\sqrt{6}}$.

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png