Difference between revisions of "2011 AMC 12A Problems/Problem 25"

(Created page with '== Problem == == Solution == == See also == {{AMC12 box|year=2011|num-b=24|after=Last Problem|ab=A}}')
 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Triangle <math>ABC</math> has <math>\angle BAC = 60^\{\circ}</math>, <math>\angle CBA \leq 90^\{\circ}</math>, <math>BC=1</math>, and <math>AC \geq AB</math>. Let <math>H</math>, <math>I</math>, and <math>O</math> be the orthocenter, incenter, and circumcenter of <math>\triangle ABC</math>, repsectively. Assume that the area of pentagon <math>BCOIH</math> is the maximum possible. What is <math>\angle CBA</math>?
 +
 +
<math>
 +
\textbf{(A)}\ 60^{\circ} \qquad
 +
\textbf{(B)}\ 72^{\circ} \qquad
 +
\textbf{(C)}\ 75^{\circ} \qquad
 +
\textbf{(D)}\ 80^{\circ} \qquad
 +
\textbf{(E)}\ 90^{\circ} </math>
 +
 
== Solution ==
 
== Solution ==
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2011|num-b=24|after=Last Problem|ab=A}}
 
{{AMC12 box|year=2011|num-b=24|after=Last Problem|ab=A}}

Revision as of 02:37, 10 February 2011

Problem

Triangle $ABC$ has $\angle BAC = 60^\{\circ}$ (Error compiling LaTeX. Unknown error_msg), $\angle CBA \leq 90^\{\circ}$ (Error compiling LaTeX. Unknown error_msg), $BC=1$, and $AC \geq AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, repsectively. Assume that the area of pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$?

$\textbf{(A)}\ 60^{\circ} \qquad \textbf{(B)}\ 72^{\circ} \qquad \textbf{(C)}\ 75^{\circ} \qquad \textbf{(D)}\ 80^{\circ} \qquad \textbf{(E)}\ 90^{\circ}$

Solution

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions