Difference between revisions of "2011 AMC 12B Problems/Problem 20"

(Solution 1)
Line 5: Line 5:
 
<math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}</math>
 
<math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}</math>
  
==Solution 1==
+
==Solutions==
 +
===Solution 1===
 
Answer: (C)
 
Answer: (C)
  
Line 26: Line 27:
 
and <math>XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\frac{195}{8}</math>
 
and <math>XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\frac{195}{8}</math>
  
==Solution 2==
+
===Solution 2===
 
Consider an additional circumcircle on <math>\triangle ADF</math>.  After drawing the diagram, it is noticed that each triangle has side values: <math>7</math>, <math>\frac{15}{2}</math>, <math>\frac{13}{2}</math>.  Thus they are congruent, and their respective circumcircles are.  By inspection, we see that <math>XA</math>, <math>XB</math>, and <math>XC</math> are the circumdiameters, and so they are congruent.  Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of <math>3</math>.  We can find the circumradius quite easily with the formula <math>\sqrt{(s)(s-a)(s-b)(s-c)} = \frac{abc}{4R}</math>, s.t. <math>s=\frac{a+b+c}{2}</math> and R is the circumradius.  Since <math>s = \frac{21}{2}</math>:
 
Consider an additional circumcircle on <math>\triangle ADF</math>.  After drawing the diagram, it is noticed that each triangle has side values: <math>7</math>, <math>\frac{15}{2}</math>, <math>\frac{13}{2}</math>.  Thus they are congruent, and their respective circumcircles are.  By inspection, we see that <math>XA</math>, <math>XB</math>, and <math>XC</math> are the circumdiameters, and so they are congruent.  Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of <math>3</math>.  We can find the circumradius quite easily with the formula <math>\sqrt{(s)(s-a)(s-b)(s-c)} = \frac{abc}{4R}</math>, s.t. <math>s=\frac{a+b+c}{2}</math> and R is the circumradius.  Since <math>s = \frac{21}{2}</math>:
  
Line 34: Line 35:
  
 
<math>\Rightarrow R = \frac{65}{16} \Rightarrow D=2R=\frac{65}{8} \Rightarrow 3D = \boxed{\frac{195}{8}}</math>.
 
<math>\Rightarrow R = \frac{65}{16} \Rightarrow D=2R=\frac{65}{8} \Rightarrow 3D = \boxed{\frac{195}{8}}</math>.
 +
 +
===Solution 3===
 +
Let <math>O</math> be the circumcenter of <math>\triangle ABC,</math> and <math>h_A</math> denote the length of the altitude from <math>A.</math> Note that a homothety centered at <math>B</math> with ratio <math>\frac{1}{2}</math> takes the circumcircle of <math>\triangle BAC</math> to the circumcircle of <math>\triangle BDE</math>. It also takes the point diametrically opposite <math>B</math> on the circumcircle of <math>\triangle BAC</math> to <math>O.</math> Therefore, <math>O</math> lies on the circumcircle of <math>\triangle BDE.</math> Similarly, it lies on the circumcircle of <math>\triangle CEF.</math> By Pythagorean triples, <math>h_A=12.</math> Finally, our answer is <math></math>3R=3\cdot \frac{abc}{4[ABC]}=3\cdot \frac{abc}{2ah_A}=3\cdot \frac{bc}{2h_A}=\boxed{\frac{195}{8}.}$
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2011|num-b=19|num-a=21|ab=B}}
 
{{AMC12 box|year=2011|num-b=19|num-a=21|ab=B}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:17, 25 June 2016

Problem

Triangle $ABC$ has $AB = 13, BC = 14$, and $AC = 15$. The points $D, E$, and $F$ are the midpoints of $\overline{AB}, \overline{BC}$, and $\overline{AC}$ respectively. Let $X \neq E$ be the intersection of the circumcircles of $\triangle BDE$ and $\triangle CEF$. What is $XA + XB + XC$?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}$

Solutions

Solution 1

Answer: (C)

Let us also consider the circumcircle of $\triangle ADF$.

Note that if we draw the perpendicular bisector of each side, we will have the circumcenter of $\triangle ABC$ which is $P$, Also, since $m\angle ADP = m\angle AFP = 90^\circ$. $ADPF$ is cyclic, similarly, $BDPE$ and $CEPF$ are also cyclic. With this, we know that the circumcircles of $\triangle ADF$, $\triangle BDE$ and $\triangle CEF$ all intersect at $P$, so $P$ is $X$.

The question now becomes calculate the sum of distance from each vertices to the circumcenter.

We can calculate the distances with coordinate geometry. (Note that $XA = XB = XC$ because $X$ is the circumcenter.)

Let $A = (5,12)$, $B = (0,0)$, $C = (14, 0)$, $X= (x_0, y_0)$

Then $X$ is on the line $x = 7$ and also the line with slope $-\frac{5}{12}$ and passes through $(2.5, 6)$.

$y_0 = 6-\frac{45}{24} = \frac{33}{8}$

So $X = (7, \frac{33}{8})$

and $XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\frac{195}{8}$

Solution 2

Consider an additional circumcircle on $\triangle ADF$. After drawing the diagram, it is noticed that each triangle has side values: $7$, $\frac{15}{2}$, $\frac{13}{2}$. Thus they are congruent, and their respective circumcircles are. By inspection, we see that $XA$, $XB$, and $XC$ are the circumdiameters, and so they are congruent. Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of $3$. We can find the circumradius quite easily with the formula $\sqrt{(s)(s-a)(s-b)(s-c)} = \frac{abc}{4R}$, s.t. $s=\frac{a+b+c}{2}$ and R is the circumradius. Since $s = \frac{21}{2}$:

\[\sqrt{(\frac{21}{2})(4)(3)(\frac{7}{2})} = \frac{\frac{15}{2}\cdot\frac{13}{2}\cdot 7}{4R}\]

After a few algebraic manipulations:

$\Rightarrow R = \frac{65}{16} \Rightarrow D=2R=\frac{65}{8} \Rightarrow 3D = \boxed{\frac{195}{8}}$.

Solution 3

Let $O$ be the circumcenter of $\triangle ABC,$ and $h_A$ denote the length of the altitude from $A.$ Note that a homothety centered at $B$ with ratio $\frac{1}{2}$ takes the circumcircle of $\triangle BAC$ to the circumcircle of $\triangle BDE$. It also takes the point diametrically opposite $B$ on the circumcircle of $\triangle BAC$ to $O.$ Therefore, $O$ lies on the circumcircle of $\triangle BDE.$ Similarly, it lies on the circumcircle of $\triangle CEF.$ By Pythagorean triples, $h_A=12.$ Finally, our answer is $$ (Error compiling LaTeX. ! Missing $ inserted.)3R=3\cdot \frac{abc}{4[ABC]}=3\cdot \frac{abc}{2ah_A}=3\cdot \frac{bc}{2h_A}=\boxed{\frac{195}{8}.}$

See also

2011 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS