# 2011 USAJMO Problems/Problem 5

## Problem

Points $A$, $B$, $C$, $D$, $E$ lie on a circle $\omega$ and point $P$ lies outside the circle. The given points are such that (i) lines $PB$ and $PD$ are tangent to $\omega$, (ii) $P$, $A$, $C$ are collinear, and (iii) $\overline{DE} \parallel \overline{AC}$. Prove that $\overline{BE}$ bisects $\overline{AC}$.

## Solution

Let $O$ be the center of the circle, and let $M$ be the midpoint of $AC$. Let $\omega$ denote the circle with diameter $OP$. Since $\angle OBP = \angle OMP = \angle ODP = 90^\circ$, $B$, $D$, and $M$ all lie on $\omega$.

$[asy] import graph; unitsize(2 cm); pair A, B, C, D, E, M, O, P; path circ; O = (0,0); circ = Circle(O,1); B = dir(100); D = dir(240); P = extension(B, B + rotate(90)*(B), D, D + rotate(90)*(D)); C = dir(-40); A = intersectionpoint((P--(P + 0.9*(C - P))),circ); E = intersectionpoint((D + 0.1*(C - A))--(D + C - A),circ); M = (A + C)/2; draw(circ); draw(P--B); draw(P--D); draw(P--C); draw(B--E); draw(D--E); draw(O--B); draw(O--D); draw(O--M); draw(O--P); draw(Circle((O + P)/2, abs(O - P)/2),dashed); draw(D--M); dot("A", A, NE); dot("B", B, NE); dot("C", C, SE); dot("D", D, S); dot("E", E, S); dot("M", M, NE); dot("O", O, dir(0)); dot("P", P, W); label("\omega", (O + P)/2 + abs(O - P)/2*dir(120), NW); [/asy]$

Since quadrilateral $BOMP$ is cyclic, $\angle BMP = \angle BOP$. Triangles $BOP$ and $DOP$ are congruent, so $\angle BOP = \angle BOD/2 = \angle BED$, so $\angle BMP = \angle BED$. Since $AC$ and $DE$ are parallel, $M$ lies on $BE$.