Difference between revisions of "2011 USAMO Problems/Problem 4"

(Solution)
Line 1: Line 1:
 +
''This problem is from both the 2011 USAJMO and the 2011 USAMO, so both problems redirect here.''
 
==Problem==
 
==Problem==
 
Consider the assertion that for each positive integer <math>n \ge 2</math>, the remainder upon dividing <math>2^{2^n}</math> by <math>2^n-1</math> is a power of 4. Either prove the assertion or find (with proof) a counterexample.
 
Consider the assertion that for each positive integer <math>n \ge 2</math>, the remainder upon dividing <math>2^{2^n}</math> by <math>2^n-1</math> is a power of 4. Either prove the assertion or find (with proof) a counterexample.

Revision as of 17:54, 15 May 2011

This problem is from both the 2011 USAJMO and the 2011 USAMO, so both problems redirect here.

Problem

Consider the assertion that for each positive integer $n \ge 2$, the remainder upon dividing $2^{2^n}$ by $2^n-1$ is a power of 4. Either prove the assertion or find (with proof) a counterexample.

Solution

We will show that $n = 25$ is a counter-example.

Since $\textstyle 2^n \equiv 1 \pmod{2^n - 1}$, we see that for any integer $k$, $\textstyle 2^{2^n} \equiv 2^{(2^n - kn)} \pmod{2^n-1}$. Let $0 \le m < n$ be the residue of $2^n \pmod n$. Note that since $\textstyle m < n$ and $\textstyle n \ge 2$, necessarily $\textstyle 2^m < 2^n -1$, and thus the remainder in question is $\textstyle 2^m$. We want to show that $\textstyle 2^m \pmod {2^n-1}$ is an odd power of 2 for some $\textstyle n$, and thus not a power of 4.

Let $\textstyle n=p^2$ for some odd prime $\textstyle p$. Then $\textstyle \varphi(p^2) = p^2 - p$. Since 2 is co-prime to $\textstyle p^2$, we have \[{2^{\varphi(p^2)} \equiv 1 \pmod{p^2}}\] and thus \[\textstyle 2^{p^2} \equiv 2^{(p^2 - p) + p} \equiv 2^p \pmod{p^2}.\]

Therefore, for a counter-example, it suffices that $\textstyle 2^p \pmod{p^2}$ be odd. Choosing $\textstyle p=5$, we have $\textstyle 2^5 = 32 \equiv 7 \pmod{25}$. Therefore, $\textstyle 2^{25} \equiv 7 \pmod{25}$ and thus \[\textstyle 2^{2^{25}} \equiv 2^7 \pmod {2^{25} - 1}.\] Since $\textstyle 2^7$ is not a power of 4, we are done.

See also

2011 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAMO Problems and Solutions