Difference between revisions of "2011 USAMO Problems/Problem 5"

Problem

Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that $\angle Q_1 BC = \angle ABP$, $\angle Q_1 CB = \angle DCP$, $\angle Q_2 AD = \angle BAP$, $\angle Q_2 DA = \angle CDP$. Prove that $\overline{Q_1 Q_2} \parallel \overline{AB}$ if and only if $\overline{Q_1 Q_2} \parallel \overline{CD}$.

Solution

First note that $\overline{Q_1 Q_2} \parallel \overline{AB}$ if and only if the altitudes from $Q_1$ and $Q_2$ to $\overline{AB}$ are the same, or $|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2$. Similarly $\overline{Q_1 Q_2} \parallel \overline{CD}$ iff $|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2$.

If we define $S =\frac{|Q_1B|\sin \angle ABQ_1}{|Q_2A|\sin \angle BAQ_2}\cdot\frac{|Q_2D|\sin \angle CDQ_2}{|Q_1C|\sin \angle DCQ_1}$, then we are done if we can show that S=1.

By the law of sines, $\frac{|Q_1B|}{|Q_1C|}=\frac{\sin\angle Q_1CB}{\sin\angle Q_1BC}$ and $\frac{|Q_2D|}{|Q_2A|}=\frac{\sin\angle Q_2AD}{\sin\angle Q_2DA}$.

So, $S=\frac{\sin \angle ABQ_1}{\sin \angle BAQ_2}\cdot\frac{\sin \angle CDQ_2}{\sin \angle DCQ_1}\cdot\frac{\sin \angle BCQ_1}{\sin \angle CBQ_1}\cdot\frac{\sin \angle DAQ_2}{\sin \angle ADQ_2}$

By the terms of the problem, $S=\frac{\sin \angle PBC}{\sin \angle PAD}\cdot\frac{\sin \angle PDA}{\sin \angle PCB}\cdot\frac{\sin \angle PCD}{\sin \angle PBA}\cdot\frac{\sin \angle PAB}{\sin \angle PDC}$. (If two subangles of an angle of the quadrilateral are equal, then their complements at that quadrilateral angle are equal as well.)

Rearranging yields $S= \frac{\sin \angle PBC}{\sin \angle PCB}\cdot\frac{\sin \angle PDA}{\sin \angle PAD}\cdot\frac{\sin \angle PCD}{\sin \angle PDC}\cdot\frac{\sin \angle PAB}{\sin \angle PBA}$.

Applying the law of sines to the triangles with vertices at P yields $S=\frac{|PC|}{|PB|}\frac{|PA|}{|PD|}\frac{|PD|}{|PC|}\frac{|PB|}{|PA|}=1$.