Difference between revisions of "2011 USAMO Problems/Problem 5"

(Solution)
Line 7: Line 7:
 
First note that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if the altitudes from <math>Q_1</math> and <math>Q_2</math> to <math>\overline{AB}</math> are the same, or <math>|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2</math>.  Similarly <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math> iff <math>|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2</math>.
 
First note that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if the altitudes from <math>Q_1</math> and <math>Q_2</math> to <math>\overline{AB}</math> are the same, or <math>|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2</math>.  Similarly <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math> iff <math>|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2</math>.
  
If we define <math>S =\dfrac{|Q_1B|\sin \angle ABQ_1}{|Q_2A|\sin \angle BAQ_2}\dfrac{|Q_2D|\sin \angle CDQ_2}{|Q_1C|\sin \angle DCQ_1}</math>, then we are done if we can show that S=1.
+
 
 +
If we define <math>S =\frac{|Q_1B|\sin \angle ABQ_1}{|Q_2A|\sin \angle BAQ_2}\frac{|Q_2D|\sin \angle CDQ_2}{|Q_1C|\sin \angle DCQ_1}</math>, then we are done if we can show that S=1.
 +
 
 +
 
 +
By the law of sines, <math>\frac{|Q_1B|}{|Q_1C|}=\frac{\sin\angle Q_1CB}{\sin\angle Q_1BC}</math> and <math>\frac{|Q_2D|}{|Q_2A|}=\frac{\sin\angle Q_2AD}{\sin\angle Q_2DA}</math>.
 +
 
 +
 
 +
So, <math>S=\frac{\sin \angle ABQ_1}{\sin \angle BAQ_2}\frac{\sin \angle CDQ_2}{\sin \angle DCQ_1}\frac{\sin \angle BCQ_1}{\sin \angle CBQ_1}\frac{\sin \angle DAQ_2}{\sin \angle ADQ_2}</math>
  
 
==See also==
 
==See also==

Revision as of 16:23, 8 June 2011

Problem

Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that $\angle Q_1 BC = \angle ABP$, $\angle Q_1 CB = \angle DCP$, $\angle Q_2 AD = \angle BAP$, $\angle Q_2 DA = \angle CDP$. Prove that $\overline{Q_1 Q_2} \parallel \overline{AB}$ if and only if $\overline{Q_1 Q_2} \parallel \overline{CD}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

First note that $\overline{Q_1 Q_2} \parallel \overline{AB}$ if and only if the altitudes from $Q_1$ and $Q_2$ to $\overline{AB}$ are the same, or $|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2$. Similarly $\overline{Q_1 Q_2} \parallel \overline{CD}$ iff $|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2$.


If we define $S =\frac{|Q_1B|\sin \angle ABQ_1}{|Q_2A|\sin \angle BAQ_2}\frac{|Q_2D|\sin \angle CDQ_2}{|Q_1C|\sin \angle DCQ_1}$, then we are done if we can show that S=1.


By the law of sines, $\frac{|Q_1B|}{|Q_1C|}=\frac{\sin\angle Q_1CB}{\sin\angle Q_1BC}$ and $\frac{|Q_2D|}{|Q_2A|}=\frac{\sin\angle Q_2AD}{\sin\angle Q_2DA}$.


So, $S=\frac{\sin \angle ABQ_1}{\sin \angle BAQ_2}\frac{\sin \angle CDQ_2}{\sin \angle DCQ_1}\frac{\sin \angle BCQ_1}{\sin \angle CBQ_1}\frac{\sin \angle DAQ_2}{\sin \angle ADQ_2}$

See also

2011 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAMO Problems and Solutions