# Difference between revisions of "2012 AIME I Problems/Problem 8"

## Problem 8

Cube $ABCDEFGH,$ labeled as shown below, has edge length $1$ and is cut by a plane passing through vertex $D$ and the midpoints $M$ and $N$ of $\overline{AB}$ and $\overline{CG}$ respectively. The plane divides the cube into two solids. The volume of the larger of the two solids can be written in the form $\tfrac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Find $p+q.$ $[asy]import cse5; unitsize(10mm); pathpen=black; dotfactor=3; pair A = (0,0), B = (3.8,0), C = (5.876,1.564), D = (2.076,1.564), E = (0,3.8), F = (3.8,3.8), G = (5.876,5.364), H = (2.076,5.364), M = (1.9,0), N = (5.876,3.465); pair[] dotted = {A,B,C,D,E,F,G,H,M,N}; D(A--B--C--G--H--E--A); D(E--F--B); D(F--G); pathpen=dashed; D(A--D--H); D(D--C); dot(dotted); label("A",A,SW); label("B",B,S); label("C",C,SE); label("D",D,NW); label("E",E,W); label("F",F,SE); label("G",G,NE); label("H",H,NW); label("M",M,S); label("N",N,NE); [/asy]$

## Solution: think outside the box

Define a coordinate system with $D$ at the origin and $C,$ $A,$ and $H$ on the $x$, $y$, and $z$ axes respectively. The $D=(0,0,0),$ $M=(.5,1,0),$ and $N=(1,0,.5).$ It follows that the plane going through $D,$ $M,$ and $N$ has equation $2x-y-4z=0.$ Let $Q = (1,1,.25)$ be the intersection of this plane and edge $BF$ and let $P = (1,2,0).$ Now since $2(1) - 1(2) - 4(0) = 0,$ $P$ is on the plane. Also, $P$ lies on the extensions of segments $DM,$ $NQ,$ and $CB$ so the solid $DPCN = DMBCQN + MPBQ$ is a right triangular pyramid. Note also that pyramid $MPBQ$ is similar to $DPCN$ with scale factor $.5$ and thus the volume of solid $DMBCQN,$ which is one of the solids bounded by the cube and the plane, is $[DPCN] - [MPBQ] = [DPCN] - \left(\frac{1}{2}\right)^3[DPCN] = \frac{7}{8}[DPCN].$ But the volume of $DPCN$ is simply the volume of a pyramid with base $1$ and height $.5$ which is $\frac{1}{3} \cdot 1 \cdot .5 = \frac{1}{6}.$ So $[DMBCQN] = \frac{7}{8} \cdot \frac{1}{6} = \frac{7}{48}.$ Note, however, that this volume is less than $.5$ and thus this solid is the smaller of the two solids. The desired volume is then $[ABCDEFGH] - [DMBCQN] = 1 - \frac{7}{48} = \frac{41}{48} \rightarrow p+q = \boxed{089.}$

## Alternative Solution (using calculus) : think inside the box

Let $Q$ be the intersection of the plane with edge $FB,$ then $\triangle MQB$ is similar to $\triangle DNC$ and the volume $[DNCMQB]$ is a sum of areas of cross sections of similar triangles running parallel to face $ABFE.$ Let $x$ be the distance from face $ABFE,$ let $h$ be the height parallel to $AB$ of the cross-sectional triangle at that distance, and $a$ be the area of the cross-sectional triangle at that distance. $A(x)=\frac{h^2}{4},$ and $h=\frac{x+1}{2},$ then $A=\frac{(x+1)^2}{16}$, and the volume $[DNCMQB]$ is $\int^1_0{A(x)}\,\mathrm{d}x=\int^1_0{\frac{(x+1)^2}{16}}\,\mathrm{d}x=\frac{7}{48}.$ Thus the volume of the larger solid is $1-\frac{7}{48}=\frac{41}{48} \rightarrow p+q = \boxed{089}$

## Alternative Solution : think inside the box like a total nerd

If you memorized the formula for a frustum, then this problem is very trivial.

The formula for a frustum is: $\frac{h_2b_2 -h_1b_1}3$ where $b_i$ is the area of the base and $h_i$ is the height from the chopped of apex to the base.

We can easily see that from symmetry, the area of the smaller front base is $\frac{1}{16}$ and the area of the larger back base is $\frac{1}4$

Now to find the height of the apex.

Extend the $DM$ and (call the intersection of the plane with $FB$ G) $NG$ to meet at $x$. Now from similar triangles $XMG$ and $XDN$ we can easily find the total height of the triangle $XDN$ to be $2$

Now straight from our formula, the area is $\frac{7}{48}$ Thus the answer is: $1-Area \Longrightarrow \boxed{089}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 