Difference between revisions of "2012 AMC 10A Problems/Problem 18"

(Created page with "== Problem 18 == The closed curve in the figure is made up of 9 congruent circular arcs each of length <math>\frac{2\pi}{3}</math>, where each of the centers of the correspondin...")
 
(Problem 18)
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ 2\pi+6\qquad\textbf{(B)}\ 2\pi+4\sqrt{3}\qquad\textbf{(C)}\ 3\pi+4\qquad\textbf{(D)}\ 2\pi+3\sqrt{3}+2\qquad\textbf{(E)}\ \pi+6\sqrt{3}</math>
 
<math>\textbf{(A)}\ 2\pi+6\qquad\textbf{(B)}\ 2\pi+4\sqrt{3}\qquad\textbf{(C)}\ 3\pi+4\qquad\textbf{(D)}\ 2\pi+3\sqrt{3}+2\qquad\textbf{(E)}\ \pi+6\sqrt{3}</math>
 
[[2012 AMC 10A Problems/Problem 18|Solution]]
 
  
 
== Solution ==
 
== Solution ==

Revision as of 20:20, 9 February 2012

Problem 18

The closed curve in the figure is made up of 9 congruent circular arcs each of length $\frac{2\pi}{3}$, where each of the centers of the corresponding circles is among the vertices of a regular hexagon of side 2. What is the area enclosed by the curve?

$\textbf{(A)}\ 2\pi+6\qquad\textbf{(B)}\ 2\pi+4\sqrt{3}\qquad\textbf{(C)}\ 3\pi+4\qquad\textbf{(D)}\ 2\pi+3\sqrt{3}+2\qquad\textbf{(E)}\ \pi+6\sqrt{3}$

Solution