Difference between revisions of "2012 AMC 10A Problems/Problem 4"

(Problem 4)
(Problem 4)
Line 3: Line 3:
 
Let <math>\angle ABC = 24</math>° and <math>\angle ABD = 20</math>°. What is the smallest possible degree measure for <math>\angle CBD ?
 
Let <math>\angle ABC = 24</math>° and <math>\angle ABD = 20</math>°. What is the smallest possible degree measure for <math>\angle CBD ?
  
</math> \qquad\textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12 $
+
</math>\textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12 $

Revision as of 19:42, 8 February 2012

Problem 4

Let $\angle ABC = 24$° and $\angle ABD = 20$°. What is the smallest possible degree measure for $\angle CBD ?$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12 $

Invalid username
Login to AoPS