# Difference between revisions of "2012 AMC 10A Problems/Problem 9"

(Created page with "A pair of six-sided dice are labeled so that one die has only even numbers (two each of 2, 4, and 6), and the other die has only odd numbers (two of each 1, 3, and 5). The pair o...") |
|||

Line 1: | Line 1: | ||

+ | == Problem 9 == | ||

+ | |||

A pair of six-sided dice are labeled so that one die has only even numbers (two each of 2, 4, and 6), and the other die has only odd numbers (two of each 1, 3, and 5). The pair of dice is rolled. What is the probability that the sum of the numbers on the tops of the two dice is 7? | A pair of six-sided dice are labeled so that one die has only even numbers (two each of 2, 4, and 6), and the other die has only odd numbers (two of each 1, 3, and 5). The pair of dice is rolled. What is the probability that the sum of the numbers on the tops of the two dice is 7? | ||

<math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2} </math> | <math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2} </math> |

## Revision as of 20:26, 8 February 2012

## Problem 9

A pair of six-sided dice are labeled so that one die has only even numbers (two each of 2, 4, and 6), and the other die has only odd numbers (two of each 1, 3, and 5). The pair of dice is rolled. What is the probability that the sum of the numbers on the tops of the two dice is 7?