Difference between revisions of "2012 AMC 10B Problems/Problem 11"

Problem 11

A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?

$\textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304$

Solution

Desserts must be chosen for $7$ days: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

There are $3$ choices for dessert on Saturday: pie, ice cream, or pudding, as there must be cake on Friday and the same dessert may not be served two days in a row. Likewise, there are $3$ choices for dessert on Thursday. Once dessert for Thursday is selected, there are $3$ choices for dessert on Wednesday, once Wednesday's dessert is selected there are $3$ choices for dessert on Tuesday, etc. Thus, there are $3$ choices for dessert for each of $6$ days, so the total number of possible dessert menus is $3^6$, or $\boxed{\textbf{(A)}\ 729}$.

See Also

 2012 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 10 Followed byProblem 12 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS