Difference between revisions of "2012 AMC 10B Problems/Problem 12"

(Created page with "== Problem == Point B is due east of point A. Point C is due north of point B. The distance between points A and C is <math>10\sqrt 2</math>, and <math>\angle BAC= 45^\circ</mat...")
 
(Solution)
Line 8: Line 8:
 
== Solution ==
 
== Solution ==
  
If point B is due east of point A and point C is due north of point B, <math>\angle CBA</math> is a right angle. And if <math>\angle BAC = 45^\circ</math>, <math>\triangle CBA</math> is a 45-45-90 triangle.
+
If point B is due east of point A and point C is due north of point B, <math>\angle CBA</math> is a right angle. And if <math>\angle BAC = 45^\circ</math>, <math>\triangle CBA</math> is a 45-45-90 triangle. Thus, the lengths of sides <math>CB</math>, <math>BA</math>, and <math>AC</math> are in the ratio <math>1:1:\sqrt 2</math>, and <math>CB</math> is <math>10 \sqrt 2 \div \sqrt 2 = 10</math>.

Revision as of 19:42, 25 February 2012

Problem

Point B is due east of point A. Point C is due north of point B. The distance between points A and C is $10\sqrt 2$, and $\angle BAC= 45^\circ$. Point D is 20 meters due north of point C. The distance AD is between which two integers?


$\textbf{(A)}\ 30\ \text{and}\ 31 \qquad\textbf{(B)}\ 31\ \text{and}\ 32 \qquad\textbf{(C)}\ 32\ \text{and}\ 33 \qquad\textbf{(D)}\ 33\ \text{and}\ 34 \qquad\textbf{(E)}\ 34\ \text{and}\ 35$

Solution

If point B is due east of point A and point C is due north of point B, $\angle CBA$ is a right angle. And if $\angle BAC = 45^\circ$, $\triangle CBA$ is a 45-45-90 triangle. Thus, the lengths of sides $CB$, $BA$, and $AC$ are in the ratio $1:1:\sqrt 2$, and $CB$ is $10 \sqrt 2 \div \sqrt 2 = 10$.

Invalid username
Login to AoPS