2012 AMC 10B Problems/Problem 2

Revision as of 18:59, 25 February 2012 by Juluqu (talk | contribs)


A circle of radius 5 is inscribed in a rectangle as shown. The ratio of the length of the rectangle to its width is 2:1. What is the area of the rectangle?

$\textbf{(A)}\ 50\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\  125\qquad\textbf{(D)}\ 150\qquad\textbf{(E)}\ 200$


Note that the diameter of the circle is equal to the shorter side of the rectangle. Since the radius is $5$, the diameter is $2\cdot 5 = 10$. Since the sides of the rectangle are in a $2:1$ ratio, the longer side has length $2\cdot 10 = 20$. Therefore the area is $20\cdot 10 = 200$ or $\boxed{E}$.

Invalid username
Login to AoPS