2012 AMC 12A Problems/Problem 20

Revision as of 23:22, 16 February 2012 by P054 (talk | contribs)

Problem

Consider the polynomial

\[P(x)=\prod_{k=0}^{10}=(x^{2^k}+2^k)=(x+1)(x^2+2)(x^4+4)\cdots (x^{1024}+1024)\]

The coefficient of $x^{2012}$ is equal to $2^a$. What is $a$?

\[\textbf{(A)}\ 5\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 24\]

Solution

Every term in the expansion of the product is formed by taking one term from each factor and multiplying them all together. Therefore, we pick a power of $x$ or a power of 2 from each factor.

Every number, including 2012, has a unique representation by the sum of powers of two, and that representation can be found by converting a number to its binary form. $2012 = 11111011100_2$, meaning $2012 = 1024 + 512 + 256 + 128 + 64 + 16 + 8 + 4$.

Thus, the $x^{2012}$ term was made by multiplying $x^{1024}$ from the $(x^{1024} + 1024)$ factor, $x^{512}$ from the $(x^{512} + 512)$ factor, and so on. The only numbers not used are 32, 2, and 1.

Thus, from the $(x^{32} + 32), (x^2+2), (x+1)$ factors, 32, 2, and 1 were chosen as opposed to $x^{32}, x^2$, and $x$.

Thus, the coefficient of the $x^{2012}$ term is $32 \times 2 \times 1 = 64 = 2^6$. So, 6 is the right answer, or B.