2012 AMC 12A Problems/Problem 23

Revision as of 18:29, 18 February 2012 by Aplus95 (talk | contribs) (Problem 23)

Problem

Let $S$ be the square one of whose diagonals has endpoints $(0.1,0.7)$ and $(-0.1,-0.7)$. A point $v=(x,y)$ is chosen uniformly at random over all pairs of real numbers $x$ and $y$ such that $0 \le x \le 2012$ and $0\le y\le 2012$. Let $T(v)$ be a translated copy of $S$ centered at $v$. What is the probability that the square region determined by $T(v)$ contains exactly two points with integer coefficients in its interior?

$\textbf{(A)}\ 0.125\qquad\textbf{(B)}\ 0.14\qquad\textbf{(C)}\ 0.16\qquad\textbf{(D)}\ 0.25 \qquad\textbf{(E)}\ 0.32$

Solution

Invalid username
Login to AoPS