Difference between revisions of "2012 AMC 12B Problems/Problem 8"

m
(Solution)
Line 24: Line 24:
 
So the number of menus is <math>3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 1 \cdot 3 = 729.</math>
 
So the number of menus is <math>3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 1 \cdot 3 = 729.</math>
 
The answer is <math> A.</math>
 
The answer is <math> A.</math>
 +
 +
==Solution 2==
 +
We can perform casework as an understandable means of getting the answer. We can organize our counting based on the food that was served on Wednesday, because whether cake is or is not served on Wednesday seems to significantly affect the number of ways the chef can make said foods for that week.
 +
 +
Case 1: Cake is served on Wednesday. Here, we have three choices for food on Thursday and Saturday since cake must be served on Friday, and none of these choices are cake, which was served Wednesday. Likewise, we have three choices (pie, ice cream, and pudding) for the food served on Tuesday and thus three choices for those served on Monday and Sunday, with these three choices being whatever was not served on Tuesday and Monday, respectively. Hence, for this case, there are <math>3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243</math> possibilities.
 +
 +
Case 2: Cake is not served on Wednesday. Obviously, this means that pie, ice cream, and pudding are our only choices for Wednesday's food. Since cake must be served on Friday, only ice cream, pudding, and cake can be served on Thursday. However, since one of those foods was chose for Wednesday, we only have two possibilities for Thursday's food. Like our first case, we have three possibilities for the food served on Tuesday, Monday, and Sunday: whatever was not served on Wednesday, Tuesday, and Monday, respectively. <math>3 \cdot 3 \cdot 3 \cdot 3 \cdot 2 \cdot 3 = 486</math> possibilities thus exist for this case.
 +
 +
Adding the number of possibilities together yields that <math>243 + 486 = 729</math> is the total number of menus, making our answer <math>A.</math>
  
 
== See Also ==
 
== See Also ==

Revision as of 00:41, 14 January 2015

Problem 8

A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?

$\textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304$

Solution

We can count the number of possible foods for each day and then multiply to enumerate the number of combinations.

On Friday, we have one possibility: cake.

On Saturday, we have three possibilities: pie, ice cream, or pudding. This is the end of the week.

On Thursday, we have three possibilities: pie, ice cream, or pudding. We can't have cake because we have to have cake the following day, which is the Friday with the birthday party.

On Wednesday, we have three possibilities: cake, plus the two things that were not eaten on Thursday.

Similarly, on Tuesday, we have three possibilities: the three things that were not eaten on Wednesday.

Likewise on Monday: three possibilities, the three things that were not eaten on Tuesday.

On Sunday, it is tempting to think there are four possibilities, but remember that cake must be served on Friday. This serves to limit the number of foods we can eat on Sunday, with the result being that there are three possibilities: The three things that were not eaten on Monday.

So the number of menus is $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 1 \cdot 3 = 729.$ The answer is $A.$

Solution 2

We can perform casework as an understandable means of getting the answer. We can organize our counting based on the food that was served on Wednesday, because whether cake is or is not served on Wednesday seems to significantly affect the number of ways the chef can make said foods for that week.

Case 1: Cake is served on Wednesday. Here, we have three choices for food on Thursday and Saturday since cake must be served on Friday, and none of these choices are cake, which was served Wednesday. Likewise, we have three choices (pie, ice cream, and pudding) for the food served on Tuesday and thus three choices for those served on Monday and Sunday, with these three choices being whatever was not served on Tuesday and Monday, respectively. Hence, for this case, there are $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243$ possibilities.

Case 2: Cake is not served on Wednesday. Obviously, this means that pie, ice cream, and pudding are our only choices for Wednesday's food. Since cake must be served on Friday, only ice cream, pudding, and cake can be served on Thursday. However, since one of those foods was chose for Wednesday, we only have two possibilities for Thursday's food. Like our first case, we have three possibilities for the food served on Tuesday, Monday, and Sunday: whatever was not served on Wednesday, Tuesday, and Monday, respectively. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 2 \cdot 3 = 486$ possibilities thus exist for this case.

Adding the number of possibilities together yields that $243 + 486 = 729$ is the total number of menus, making our answer $A.$

See Also

2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png