During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

# Difference between revisions of "2012 AMC 8 Problems/Problem 19"

## Problem

In a jar of red, green, and blue marbles, all but 6 are red marbles, all but 8 are green, and all but 4 are blue. How many marbles are in the jar?

$\textbf{(A)}\hspace{.05in}6\qquad\textbf{(B)}\hspace{.05in}8\qquad\textbf{(C)}\hspace{.05in}9\qquad\textbf{(D)}\hspace{.05in}10\qquad\textbf{(E)}\hspace{.05in}12$

## Solution 1

6 are blue and green- b+g=6

8 are red and blue- r+b=8

4 are red and green- r+g=4

We can do trial and error. Let's make blue 5. That makes green 1 and red 3 because 6-5=1 and 8-5=3. To check this let's plug 1 and 3 into r+g=4 and it does work. Now count the number of marbles- 5+3+1=9. So 9 (C) is the answer.

## Solution 2

We already knew the facts: $6$ are blue and green, meaning $b+g=6$; $8$ are red and blue, meaning $r+b=8$; $4$ are red and green, meaning $r+g=4$. Then we need to add these three equations: $b+g+r+b+r+g=2(r+g+b)=6+8+4=19$. It gives us all of the marbles are $r+g+b = 19/2 = 9$. So the answer is $\boxed{\textbf{(C)}\ 9}$. ---LarryFlora

## Solution 3 Venn Diagrams

We may draw three Venn diagrams to represent these three cases, respectively.

Let the amount of all the marbles is $x$, meaning $R+G+B = x$. The Venn diagrams give us the equation: $(x-6)+(x-8)+(x-4) = x$. Then $3x-18= x$. Resolving the equation,$x = 18/2 =9$, thus, the answer is $\boxed{\textbf{(C)}\ 9}$. ---LarryFlora

 2012 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 18 Followed byProblem 20 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions