Difference between revisions of "2013 AIME II Problems/Problem 10"
(Tag: Undo) |
Hashtagmath (talk | contribs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
+ | |||
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
Line 67: | Line 68: | ||
So when area of <math>\triangle OKL</math> is maximized, <math>\angle KOL = \frac{\pi}{2}</math>. | So when area of <math>\triangle OKL</math> is maximized, <math>\angle KOL = \frac{\pi}{2}</math>. | ||
− | Eventually, we get <cmath>\triangle BKL= | + | Eventually, we get <cmath>\triangle BKL= \frac12 \cdot (\sqrt{13})^2\cdot(\frac{4}{4+\sqrt{13}})=\frac{104-26\sqrt{13}}{3}</cmath> |
So the answer is <math>104+26+13+3=\boxed{146}</math>. | So the answer is <math>104+26+13+3=\boxed{146}</math>. |
Latest revision as of 20:21, 17 April 2021
Contents
Problem
Given a circle of radius , let be a point at a distance from the center of the circle. Let be the point on the circle nearest to point . A line passing through the point intersects the circle at points and . The maximum possible area for can be written in the form , where , , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find .
Solution 1
Now we put the figure in the Cartesian plane, let the center of the circle , then , and
The equation for Circle O is , and let the slope of the line be , then the equation for line is .
Then we get . According to Vieta's Formulas, we get
, and
So,
Also, the distance between and is
So the area
Then the maximum value of is
So the answer is .
Solution 2
Draw perpendicular to at . Draw perpendicular to at .
Therefore, to maximize area of , we need to maximize area of .
So when area of is maximized, .
Eventually, we get
So the answer is .
See Also
http://girlsangle.wordpress.com/2013/11/26/2013-aime-2-problem-10/
2013 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.