2013 AIME II Problems/Problem 6

Find the least positive integer $N$ such that the set of $1000$ consecutive integers beginning with $1000\cdot N$ contains no square of an integer.

Solution

Let us first observe the difference between $x^2$ and $(x+1)^2$, for any arbitrary $x\ge 0$. $(x+1)^2-x^2=2x+1$. So that means for every $x\ge 0$, the difference between that square and the next square have a difference of $2x+1$. Now, we need to find an $x$ such that $2x+1\ge 1000$. Solving gives $x\ge \frac{999}{2}$, so $x\ge 500$. Now we need to find what range of numbers has to be square-free: $\overline{N000}\rightarrow \overline{N999}$ have to all be square-free. Let us first plug in a few values of $x$ to see if we can figure anything out. $x=500$, $x^2=250000$, and $(x+1)^2=251001$. Notice that this does not fit the criteria, because $250000$ is a square, whereas $\overline{N000}$ cannot be a square. This means, we must find a square, such that the last $3$ digits are close to $1000$, but not there, such as $961$ or $974$. Now, the best we can do is to keep on listing squares until we hit one that fits. We do not need to solve for each square: remember that the difference between consecutive squares are $2x+1$, so all we need to do is addition. After making a list, we find that $531^2=281961$, while $532^2=283024$. It skipped $282000$, so our answer is $\boxed{282}$