Difference between revisions of "2013 AIME II Problems/Problem 8"

m
(10 intermediate revisions by 6 users not shown)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
 +
<asy>
 +
import olympiad;
 +
import math;
 +
 +
pair A,B,C,D,E,F;
 +
B=origin; C=(10,0); D=(12,-5); E=(10,-10); F=(0,-10); A=(-2, -5);
 +
draw(A--B);draw(B--C);draw(C--D);draw(D--E);draw(E--F);draw(F--A);
 +
dot(A); dot(B); dot(C); dot(D); dot(E); dot(F);
 +
draw(circumcircle(A, D, F));
 +
label("$A$",A,W);label("$B$",B,NW);label("$C$",C,NE);label("$D$",D,W);label("$E$",E,SE);label("$F$",F,SW);
 +
 +
</asy>
 +
  
 
===Solution 1===
 
===Solution 1===
Line 8: Line 21:
 
We can just consider one half of the hexagon, <math>ABCD</math>, to make matters simpler.  
 
We can just consider one half of the hexagon, <math>ABCD</math>, to make matters simpler.  
 
Draw a line from the center of the circle, <math>O</math>, to the midpoint of <math>BC</math>, <math>E</math>. Now, draw a line from <math>O</math> to the midpoint of <math>AB</math>, <math>F</math>. Clearly, <math>\angle BEO=90^{\circ}</math>, because <math>BO=CO</math>, and <math>\angle BFO=90^{\circ}</math>, for similar reasons. Also notice that <math>\angle AOE=90^{\circ}</math>.  
 
Draw a line from the center of the circle, <math>O</math>, to the midpoint of <math>BC</math>, <math>E</math>. Now, draw a line from <math>O</math> to the midpoint of <math>AB</math>, <math>F</math>. Clearly, <math>\angle BEO=90^{\circ}</math>, because <math>BO=CO</math>, and <math>\angle BFO=90^{\circ}</math>, for similar reasons. Also notice that <math>\angle AOE=90^{\circ}</math>.  
Let us call <math>\angle BFO=\theta</math>. Therefore, <math>\angle AOB=2\theta</math>, and so <math>\angle AOE=90-2\theta</math>. Let us label the radius of the circle <math>r</math>. This means <cmath>\sin{\theta}=\frac{BF}{r}=\frac{11}{r}</cmath> <cmath>\sin{(90-2\theta)}=\frac{BE}{r}=\frac{10}{r}</cmath>
+
Let us call <math>\angle BOF=\theta</math>. Therefore, <math>\angle AOB=2\theta</math>, and so <math>\angle BOE=90-2\theta</math>. Let us label the radius of the circle <math>r</math>. This means <cmath>\sin{\theta}=\frac{BF}{r}=\frac{11}{r}</cmath> <cmath>\sin{(90-2\theta)}=\frac{BE}{r}=\frac{10}{r}</cmath>
 
Now we can use simple trigonometry to solve for <math>r</math>.
 
Now we can use simple trigonometry to solve for <math>r</math>.
 
Recall that  <math>\sin{(90-\alpha)}=\cos(\alpha)</math>: That means <math>\sin{(90-2\theta)}=\cos{2\theta}=\frac{10}{r}</math>.
 
Recall that  <math>\sin{(90-\alpha)}=\cos(\alpha)</math>: That means <math>\sin{(90-2\theta)}=\cos{2\theta}=\frac{10}{r}</math>.
Line 19: Line 32:
  
 
===Solution 2===
 
===Solution 2===
Using the trapezoid <math>ABCD</math> mentioned above, draw an altitude of the trapezoid passing through point <math>B</math> onto <math>AD</math> at point <math>E</math>. Now, we can use the pythagorean theorem: <math>(22^2-(r-10)^2)+10^2=r^2</math>. Expanding and combining like terms gives us the quadratic <cmath>r^2-10r-242=0</cmath> and solving for <math>r</math> gives <math>r=5+\sqrt{267}</math>. So the solution is <math>5+267=\boxed{272}</math>.
+
Using the trapezoid <math>ABCD</math> mentioned above, draw an altitude of the trapezoid passing through point <math>B</math> onto <math>AD</math> at point <math>J</math>. Now, we can use the pythagorean theorem: <math>(22^2-(r-10)^2)+10^2=r^2</math>. Expanding and combining like terms gives us the quadratic <cmath>r^2-10r-242=0</cmath> and solving for <math>r</math> gives <math>r=5+\sqrt{267}</math>. So the solution is <math>5+267=\boxed{272}</math>.
  
 
===Solution 3===
 
===Solution 3===
Line 40: Line 53:
  
 
Since the radius is half the diameter, it is <math>\sqrt{267}+5</math>, so the answer is <math>5+267 \Rightarrow \boxed{272}</math>.
 
Since the radius is half the diameter, it is <math>\sqrt{267}+5</math>, so the answer is <math>5+267 \Rightarrow \boxed{272}</math>.
 
+
===Solution 4===
 +
As we can see this image, it is symmetrical hence the diameter divides the hexagon into two congruent quadrilateral. Now we can apply the Ptolemy's theorem. Denote the radius is r, we can get <cmath>22*2x+440=\sqrt{4x^2-400}\sqrt{4x^2-484}</cmath>, after simple factorization, we can get <cmath>x^4-342x^2-2420x=0</cmath>, it is easy to see that <math>x=-10, x=0</math> are two solutions for the equation, so we can factorize that into <cmath>x(x+10)(x^2-10x-242)</cmath>so we only need to find the solution for <cmath>x^2-10x-242=0</cmath> and we can get <math>x=(\sqrt{267}+5)</math> is the desired answer for the problem, and our answer is <math>5+267 \Rightarrow \boxed{272}</math>.~bluesoul
 
==See Also==
 
==See Also==
 
{{AIME box|year=2013|n=II|num-b=7|num-a=9}}
 
{{AIME box|year=2013|n=II|num-b=7|num-a=9}}
 +
{{MAA Notice}}

Revision as of 05:33, 21 August 2021

Problem 8

A hexagon that is inscribed in a circle has side lengths $22$, $22$, $20$, $22$, $22$, and $20$ in that order. The radius of the circle can be written as $p+\sqrt{q}$, where $p$ and $q$ are positive integers. Find $p+q$.

Solution

[asy] import olympiad; import math;  pair A,B,C,D,E,F; B=origin; C=(10,0); D=(12,-5); E=(10,-10); F=(0,-10); A=(-2, -5); draw(A--B);draw(B--C);draw(C--D);draw(D--E);draw(E--F);draw(F--A); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); draw(circumcircle(A, D, F)); label("$A$",A,W);label("$B$",B,NW);label("$C$",C,NE);label("$D$",D,W);label("$E$",E,SE);label("$F$",F,SW);  [/asy]


Solution 1

Let us call the hexagon $ABCDEF$, where $AB=CD=DE=AF=22$, and $BC=EF=20$. We can just consider one half of the hexagon, $ABCD$, to make matters simpler. Draw a line from the center of the circle, $O$, to the midpoint of $BC$, $E$. Now, draw a line from $O$ to the midpoint of $AB$, $F$. Clearly, $\angle BEO=90^{\circ}$, because $BO=CO$, and $\angle BFO=90^{\circ}$, for similar reasons. Also notice that $\angle AOE=90^{\circ}$. Let us call $\angle BOF=\theta$. Therefore, $\angle AOB=2\theta$, and so $\angle BOE=90-2\theta$. Let us label the radius of the circle $r$. This means \[\sin{\theta}=\frac{BF}{r}=\frac{11}{r}\] \[\sin{(90-2\theta)}=\frac{BE}{r}=\frac{10}{r}\] Now we can use simple trigonometry to solve for $r$. Recall that $\sin{(90-\alpha)}=\cos(\alpha)$: That means $\sin{(90-2\theta)}=\cos{2\theta}=\frac{10}{r}$. Recall that $\cos{2\alpha}=1-2\sin^2{\alpha}$: That means $\cos{2\theta}=1-2\sin^2{\theta}=\frac{10}{r}$. Let $\sin{\theta}=x$. Substitute to get $x=\frac{11}{r}$ and $1-2x^2=\frac{10}{r}$ Now substitute the first equation into the second equation: $1-2\left(\frac{11}{r}\right)^2=\frac{10}{r}$ Multiplying both sides by $r^2$ and reordering gives us the quadratic \[r^2-10r-242=0\] Using the quadratic equation to solve, we get that $r=5+\sqrt{267}$ (because $5-\sqrt{267}$ gives a negative value), so the answer is $5+267=\boxed{272}$.

Solution 2

Using the trapezoid $ABCD$ mentioned above, draw an altitude of the trapezoid passing through point $B$ onto $AD$ at point $J$. Now, we can use the pythagorean theorem: $(22^2-(r-10)^2)+10^2=r^2$. Expanding and combining like terms gives us the quadratic \[r^2-10r-242=0\] and solving for $r$ gives $r=5+\sqrt{267}$. So the solution is $5+267=\boxed{272}$.

Solution 3

Join the diameter of the circle $AD$ and let the length be $d$. By Ptolemy's Theorem on trapezoid $ADEF$, $(AD)(EF) + (AF)(DE) = (AE)(DF)$. Since it is an isosceles trapezoid, both diagonals are equal. Let them be equal to $x$ each. Then

\[20d + 22^2 = x^2\]

Since $\angle AED$ is subtended by the diameter, it is right. Hence by the Pythagorean Theorem with right $\triangle AED$:

\[(AE)^2 + (ED)^2 = (AD)^2\] \[x^2 + 22^2 = d^2\]

From the above equations, we have: \[x^2 = d^2 - 22^2 = 20d + 22^2\] \[d^2 - 20d = 2\times22^2\] \[d^2 - 20d + 100 = 968+100 = 1068\] \[(d-10) = \sqrt{1068}\] \[d = \sqrt{1068} + 10 = 2\times(\sqrt{267}+5)\]

Since the radius is half the diameter, it is $\sqrt{267}+5$, so the answer is $5+267 \Rightarrow \boxed{272}$.

Solution 4

As we can see this image, it is symmetrical hence the diameter divides the hexagon into two congruent quadrilateral. Now we can apply the Ptolemy's theorem. Denote the radius is r, we can get \[22*2x+440=\sqrt{4x^2-400}\sqrt{4x^2-484}\], after simple factorization, we can get \[x^4-342x^2-2420x=0\], it is easy to see that $x=-10, x=0$ are two solutions for the equation, so we can factorize that into \[x(x+10)(x^2-10x-242)\]so we only need to find the solution for \[x^2-10x-242=0\] and we can get $x=(\sqrt{267}+5)$ is the desired answer for the problem, and our answer is $5+267 \Rightarrow \boxed{272}$.~bluesoul

See Also

2013 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png