Difference between revisions of "2013 AIME I Problems/Problem 10"

(Solution)
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
(solution)
+
 
 +
Since <math>r+si</math> is a root, by the Complex Conjugate Root Theorem, <math>r-si</math> must be the other imaginary root. Using <math>q</math> to represent the rational root, we have
 +
 
 +
<math>(x-q)(x-r-si)(x-r+si) = x^3 -ax^2 + bx -65</math>
 +
 
 +
Applying difference of squares, and regrouping, we have
 +
 
 +
<math>(x-q)(x^2 - 2rx + (r^2 + s^2) = x^3 -ax^2 + bx -65</math>
 +
 
 +
So matching coefficients, we obtain
 +
 
 +
<math>q(r^2 + s^2) = 65</math>
 +
 
 +
<math>b = r^2 + s^2 + 2rq</math>
 +
 
 +
<math>a = q + 2r</math>
 +
 
 +
By Vieta's each <math> {p}_{a,b} = a </math> so we just need to find the values of <math> a </math> in each pair.
 +
We proceed by determining possible values for <math>q</math>, <math>r</math>, and <math>s</math> and using these to determine <math>a</math> and <math>b</math>.
 +
If <math>q = 1</math> : <math>r^2 + s^2 = 65</math>
 +
so (r, s) = <math>(\pm1, \pm 8), (\pm8, \pm 1), (\pm4, \pm 7), (\pm7, \pm 4)</math>
 +
 
 +
Similarly, for <math>q = 5</math>, <math>r^2 + s^2 = 13</math> so the pairs <math>(r,s)</math> are
 +
<math>(\pm2, \pm 3), (\pm3, \pm 2)</math>
 +
 
 +
For <math>q = 13</math> ,<math> r^2 + s^2 = 5</math> so the pairs <math> (r,s)</math> are
 +
<math>(\pm2, \pm 1), (\pm1, \pm 2)</math>
 +
 
 +
Then, since only <math>s^2</math> but not <math>s</math> appears in the equations for <math>a</math> and <math>b</math>, we can ignore the plus minus sign for <math>s</math>.
 +
The positive and negative values of r will cancel, so the sum of the  <math> {p}_{a,b} = a </math> for<math> q = 1</math> is <math>q</math> times the number of distinct<math> r</math> values (as each value of r generates a pair <math>(a,b)</math>).
 +
Our answer is then <math>(1)(8) + (5)(4) + (13)(4) = 80</math>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2013|n=I|num-b=9|num-a=11}}
 
{{AIME box|year=2013|n=I|num-b=9|num-a=11}}

Revision as of 23:11, 16 March 2013

Problem 10

There are nonzero integers $a$, $b$, $r$, and $s$ such that the complex number $r+si$ is a zero of the polynomial $P(x)={x}^{3}-a{x}^{2}+bx-65$. For each possible combination of $a$ and $b$, let ${p}_{a,b}$ be the sum of the zeros of $P(x)$. Find the sum of the ${p}_{a,b}$'s for all possible combinations of $a$ and $b$.


Solution

Since $r+si$ is a root, by the Complex Conjugate Root Theorem, $r-si$ must be the other imaginary root. Using $q$ to represent the rational root, we have

$(x-q)(x-r-si)(x-r+si) = x^3 -ax^2 + bx -65$

Applying difference of squares, and regrouping, we have

$(x-q)(x^2 - 2rx + (r^2 + s^2) = x^3 -ax^2 + bx -65$

So matching coefficients, we obtain

$q(r^2 + s^2) = 65$

$b = r^2 + s^2 + 2rq$

$a = q + 2r$

By Vieta's each ${p}_{a,b} = a$ so we just need to find the values of $a$ in each pair. We proceed by determining possible values for $q$, $r$, and $s$ and using these to determine $a$ and $b$. If $q = 1$ : $r^2 + s^2 = 65$ so (r, s) = $(\pm1, \pm 8), (\pm8, \pm 1), (\pm4, \pm 7), (\pm7, \pm 4)$

Similarly, for $q = 5$, $r^2 + s^2 = 13$ so the pairs $(r,s)$ are $(\pm2, \pm 3), (\pm3, \pm 2)$

For $q = 13$ ,$r^2 + s^2 = 5$ so the pairs $(r,s)$ are $(\pm2, \pm 1), (\pm1, \pm 2)$

Then, since only $s^2$ but not $s$ appears in the equations for $a$ and $b$, we can ignore the plus minus sign for $s$. The positive and negative values of r will cancel, so the sum of the ${p}_{a,b} = a$ for$q = 1$ is $q$ times the number of distinct$r$ values (as each value of r generates a pair $(a,b)$). Our answer is then $(1)(8) + (5)(4) + (13)(4) = 80$

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions