Difference between revisions of "2013 AIME I Problems/Problem 12"

(Problem 12)
(added solution. unsure of correctness)
Line 1: Line 1:
 
== Problem 12 ==
 
== Problem 12 ==
Let <math>\bigtriangleup PQR</math> be a triangle with <math>\angle P = 75^o</math> and <math>\angle Q = 60^o</math>. A regular hexagon <math>ABCDEF</math> with side length 1 is drawn inside <math>\triangle PQR</math> so that side <math>\overline{AB}</math> lies on <math>\overline{PQ}</math>, side <math>\overline{CD}</math> lies on <math>\overline{QR}</math>, and one of the remaining vertices lies on <math>\overline{RP}</math>. There are positive integers <math>a, b, c, </math> and <math>d</math> such that the area of <math>\triangle PQR</math> can be expressed in the form <math>\frac{a+b\sqrt{c}}{d}</math>, where <math>a</math> and <math>d</math> are relatively prime, and c is not divisible by the square of any prime. Find <math>a+b+c+d</math>.
+
Let <math>\bigtriangleup PQR</math> be a triangle with <math>\angle P = 75^\circ</math> and <math>\angle Q = 60^\circ</math>. A regular hexagon <math>ABCDEF</math> with side length 1 is drawn inside <math>\triangle PQR</math> so that side <math>\overline{AB}</math> lies on <math>\overline{PQ}</math>, side <math>\overline{CD}</math> lies on <math>\overline{QR}</math>, and one of the remaining vertices lies on <math>\overline{RP}</math>. There are positive integers <math>a, b, c, </math> and <math>d</math> such that the area of <math>\triangle PQR</math> can be expressed in the form <math>\frac{a+b\sqrt{c}}{d}</math>, where <math>a</math> and <math>d</math> are relatively prime, and c is not divisible by the square of any prime. Find <math>a+b+c+d</math>.
  
 
== Solution ==
 
== Solution ==
(solution)
+
First, find that <math>\angle R = 45^\circ</math>.
 +
Draw <math>ABCDEF</math>. Now draw <math>\bigtriangleup PQR</math> around <math>ABCDEF</math> such that <math>Q</math> is adjacent to <math>C</math> and <math>D</math>. The height of <math>ABCDEF</math> is <math>\sqrt{3}</math>, so the length of base <math>QR</math> is <math>2+\sqrt{3}</math>. Let the equation of <math>\overline{RP}</math> be <math>y = x</math>. Then, the equation of <math>\overline{PQ}</math> is <math>y = -\sqrt{3} (x - (2+\sqrt{3})) \to y = -x\sqrt{3} + 2\sqrt{3} + 3</math>. Solving the two equations gives <math>y = x = \frac{\sqrt{3} + 3}{2}</math>. The area of <math>\bigtriangleup PQR is </math>(2 + \sqrt{3}) * \frac{\sqrt{3} + 3}{2} = \frac{5\sqrt{3} + 9}{2}<math>. </math>a + b + c + d = 9 + 5 + 3 + 2 = 19$
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2013|n=I|num-b=11|num-a=13}}
 
{{AIME box|year=2013|n=I|num-b=11|num-a=13}}

Revision as of 23:19, 17 March 2013

Problem 12

Let $\bigtriangleup PQR$ be a triangle with $\angle P = 75^\circ$ and $\angle Q = 60^\circ$. A regular hexagon $ABCDEF$ with side length 1 is drawn inside $\triangle PQR$ so that side $\overline{AB}$ lies on $\overline{PQ}$, side $\overline{CD}$ lies on $\overline{QR}$, and one of the remaining vertices lies on $\overline{RP}$. There are positive integers $a, b, c,$ and $d$ such that the area of $\triangle PQR$ can be expressed in the form $\frac{a+b\sqrt{c}}{d}$, where $a$ and $d$ are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.

Solution

First, find that $\angle R = 45^\circ$. Draw $ABCDEF$. Now draw $\bigtriangleup PQR$ around $ABCDEF$ such that $Q$ is adjacent to $C$ and $D$. The height of $ABCDEF$ is $\sqrt{3}$, so the length of base $QR$ is $2+\sqrt{3}$. Let the equation of $\overline{RP}$ be $y = x$. Then, the equation of $\overline{PQ}$ is $y = -\sqrt{3} (x - (2+\sqrt{3})) \to y = -x\sqrt{3} + 2\sqrt{3} + 3$. Solving the two equations gives $y = x = \frac{\sqrt{3} + 3}{2}$. The area of $\bigtriangleup PQR is$(2 + \sqrt{3}) * \frac{\sqrt{3} + 3}{2} = \frac{5\sqrt{3} + 9}{2}$.$a + b + c + d = 9 + 5 + 3 + 2 = 19$

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS