Difference between revisions of "2013 AIME I Problems/Problem 13"

m (Solution)
(Solution)
Line 12: Line 12:
 
So the geometric series converges to  
 
So the geometric series converges to  
 
<math>\dfrac{90 \cdot 17^2}{25^2} \dfrac{1}{1 - \dfrac{336^2}{625^2}} = \dfrac{90 \cdot 17^2}{25^2} \dfrac{625^2}{625^2 - 336^2}</math>.
 
<math>\dfrac{90 \cdot 17^2}{25^2} \dfrac{1}{1 - \dfrac{336^2}{625^2}} = \dfrac{90 \cdot 17^2}{25^2} \dfrac{625^2}{625^2 - 336^2}</math>.
Using the diffference of squares, we get <math>\dfrac{90 \cdot 17^2}{25^2}\dfrac{625^2}{(625 - 336)(625 + 336)}</math>, which simplifies to  <math> \dfrac{90 \cdot 17^2}{25^2} \dfrac{625^2}{(289)(961)}</math>. Cancellling all common factors, we get the reduced fraction, <math> = \dfrac{90 \cdot 25^2}{31^2} </math>, yielding the answer <math>961</math>.
+
Using the diffference of squares, we get <math>\dfrac{90 \cdot 17^2}{25^2}\dfrac{625^2}{(625 - 336)(625 + 336)}</math>, which simplifies to  <math> \dfrac{90 \cdot 17^2}{25^2} \dfrac{625^2}{(289)(961)}</math>. Cancellling all common factors, we get the reduced fraction  <math> = \dfrac{90 \cdot 25^2}{31^2} </math>. So <math>\frac{p}{q}=1-\frac{90 \cdot 25^2}{31^2}=\frac{90 \cdot 336}{961}</math>, yielding the answer <math>961</math>.
  
 
[[File:AIME13.png]]
 
[[File:AIME13.png]]

Revision as of 03:21, 1 February 2014

Problem 13

Triangle $AB_0C_0$ has side lengths $AB_0 = 12$, $B_0C_0 = 17$, and $C_0A = 25$. For each positive integer $n$, points $B_n$ and $C_n$ are located on $\overline{AB_{n-1}}$ and $\overline{AC_{n-1}}$, respectively, creating three similar triangles $\triangle AB_nC_n \sim \triangle B_{n-1}C_nC_{n-1} \sim \triangle AB_{n-1}C_{n-1}$. The area of the union of all triangles $B_{n-1}C_nB_n$ for $n\geq1$ can be expressed as $\tfrac pq$, where $p$ and $q$ are relatively prime positive integers. Find $q$.

Solution

Using Heron's Formula we can get the area of the triangle $\Delta AB_0C_0 = 90$. Since $\Delta AB_0C_0 \sim \Delta B_0C_1C_0$ then the scale factor for the dimensions of $\Delta B_0C_1C_0$ to $\Delta AB_0C_0$ is $\dfrac{17}{25}.$ Therefore, the area of $\Delta B_0C_1C_0$ is $(\dfrac{17}{25})^2(90)$. Also, the dimensions of the other sides of the $\Delta B_0C_1C_0$ can be easily computed: $\overline{B_0C_1}= \dfrac{17}{25}(12)$ and $\overline{C_1C_0} = \dfrac{17^2}{25}$. This allows us to compute one side of the triangle $\Delta AB_0C_0$, $\overline{AC_1} = 25 - \dfrac{17^2}{25} = \dfrac{25^2 - 17^2}{25}$. Therefore, the scale factor $\Delta AB_1C_1$ to $\Delta AB_0C_0$ is $\dfrac{25^2 - 17^2}{25^2}$ , which yields the length of $\overline{B_1C_1}$ as $\dfrac{25^2 - 17^2}{25^2}(17)$. Therefore, the scale factor for $\Delta B_1C_2C_1$ to $\Delta B_0C_1C_0$ is $\dfrac{25^2 - 17^2}{25^2}$. Some more algebraic manipulation will show that $\Delta B_nC_{n+1}C_n$ to $\Delta B_{n-1}C_nC_{n-1}$ is still $\dfrac{25^2 - 17^2}{25^2}$. Also, since the triangles are disjoint, the area of the union is the sum of the areas. Therefore, the area is the geometric series $\dfrac{90 \cdot 17^2}{25^2} \sum_{n=0}^{\infty} (\dfrac{25^2-17^2}{25^2})^2$ At this point, it may be wise to "simplify" $25^2 - 17^2 = (25-17)(25+17) = (8)(42) = 336$. So the geometric series converges to $\dfrac{90 \cdot 17^2}{25^2} \dfrac{1}{1 - \dfrac{336^2}{625^2}} = \dfrac{90 \cdot 17^2}{25^2} \dfrac{625^2}{625^2 - 336^2}$. Using the diffference of squares, we get $\dfrac{90 \cdot 17^2}{25^2}\dfrac{625^2}{(625 - 336)(625 + 336)}$, which simplifies to $\dfrac{90 \cdot 17^2}{25^2} \dfrac{625^2}{(289)(961)}$. Cancellling all common factors, we get the reduced fraction $= \dfrac{90 \cdot 25^2}{31^2}$. So $\frac{p}{q}=1-\frac{90 \cdot 25^2}{31^2}=\frac{90 \cdot 336}{961}$, yielding the answer $961$.

AIME13.png

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png