Difference between revisions of "2013 AIME I Problems/Problem 3"

(Adding problem section)
(Remove extra problem section)
Line 1: Line 1:
 
==Problem==
 
 
== Problem 3 ==
 
== Problem 3 ==
 
Let <math>ABCD</math> be a square, and let <math>E</math> and <math>F</math> be points on <math>\overline{AB}</math> and <math>\overline{BC},</math> respectively. The line through <math>E</math> parallel to <math>\overline{BC}</math> and the line through <math>F</math> parallel to <math>\overline{AB}</math> divide <math>ABCD</math> into two squares and two nonsquare rectangles. The sum of the areas of the two squares is <math>\frac{9}{10}</math> of the area of square <math>ABCD.</math> Find <math>\frac{AE}{EB} + \frac{EB}{AE}.</math>
 
Let <math>ABCD</math> be a square, and let <math>E</math> and <math>F</math> be points on <math>\overline{AB}</math> and <math>\overline{BC},</math> respectively. The line through <math>E</math> parallel to <math>\overline{BC}</math> and the line through <math>F</math> parallel to <math>\overline{AB}</math> divide <math>ABCD</math> into two squares and two nonsquare rectangles. The sum of the areas of the two squares is <math>\frac{9}{10}</math> of the area of square <math>ABCD.</math> Find <math>\frac{AE}{EB} + \frac{EB}{AE}.</math>

Revision as of 16:59, 9 August 2018

Problem 3

Let $ABCD$ be a square, and let $E$ and $F$ be points on $\overline{AB}$ and $\overline{BC},$ respectively. The line through $E$ parallel to $\overline{BC}$ and the line through $F$ parallel to $\overline{AB}$ divide $ABCD$ into two squares and two nonsquare rectangles. The sum of the areas of the two squares is $\frac{9}{10}$ of the area of square $ABCD.$ Find $\frac{AE}{EB} + \frac{EB}{AE}.$


Solution

It's important to note that $\dfrac{AE}{EB} + \dfrac{EB}{AE}$ is equivalent to $\dfrac{AE^2 + EB^2}{(AE)(EB)}$

We define $a$ as the length of the side of larger inner square, which is also $EB$, $b$ as the length of the side of the smaller inner square which is also $AE$, and $s$ as the side length of $ABCD$. Since we are given that the sum of the areas of the two squares is$\frac{9}{10}$ of the the area of ABCD, we can represent that as $a^2 + b^2 = \frac{9s^2}{10}$. The sum of the two nonsquare rectangles can then be represented as $2ab  = \frac{s^2}{10}$.

Looking back at what we need to find, we can represent $\dfrac{AE^2 + EB^2}{(AE)(EB)}$ as $\dfrac{a^2 + b^2}{ab}$. We have the numerator, and dividing$\frac{s^2}{10}$ by two gives us the denominator $\frac{s^2}{20}$. Dividing $\dfrac{\frac{9s^2}{10}}{\frac{s^2}{20}}$ gives us an answer of $\boxed{018}$.

Solution 2

Let the side of the square be $1$. Therefore the area of the square is also $1$. We label $AE$ as $a$ and $EB$ as $b$. Notice that what we need to find is equivalent to: $\frac{a^2+b^2}{ab}$. Since the sum of the two squares ($a^2+b^2$) is $\frac{9}{10}$ (as stated in the problem) the area of the whole square, it is clear that the sum of the two rectangles is $1-\frac{9}{10} \implies \frac{1}{10}$. Since these two rectangles are congruent, they each have area: $\frac{1}{20}$. Also note that the area of this is $ab$. Plugging this into our equation we get:

$\frac{\frac{9}{10}}{\frac{1}{20}} \implies \boxed{018}$


Solution 3

Let $AE$ be $x$, and $EB$ be $1$. Then we are looking for the value $x+\frac{1}{x}$. The areas of the smaller squares add up to $9/10$ of the area of the large square, $(x+1)^2$. Cross multiplying and simplifying we get $x^2-18x+1=0$. Rearranging, we get $x+\frac{1}{x}=\boxed{018}$

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png